Skip to main content
Log in

Quantum statistical systems in D-dimensional space using a fractional derivative

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We investigate the thermodynamic properties of some quantum statistical systems with a fractional Hamiltonian in D-dimensional space. We calculate the partition function of the system of N fractional quantum oscillators and the thermodynamic quantities associated with it. We consider the thermal and critical properties of both Bose and Fermi gases in the context of the fractional energy and described by a fractional derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993).

    MATH  Google Scholar 

  2. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution, and Some of Their Applications (Math. Sci. Engin., vol. 198), Acad. Press, San Diego, Calif. (1999).

  3. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).

    Book  MATH  Google Scholar 

  4. K. S. Fa, Phys. A, 350, 199–206 (2005).

    Article  MathSciNet  Google Scholar 

  5. F. Riewe, Phys. Rev. E, 53, 1890–1899 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  6. F. Riewe, Phys. Rev. E, 55, 3581–3592 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  7. G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford Univ. Press, Oxford (2005).

    MATH  Google Scholar 

  8. A. Hussain, S. Ishfaq, and Q. A. Naqvi, Prog. Electromagn. Res., 63, 319–335 (2006).

    Article  Google Scholar 

  9. V. E. Tarasov, Phys. Lett. A, 336, 167–174 (2005).

    Article  ADS  Google Scholar 

  10. V. E. Tarasov, Chaos, 15, 023102 (2005); arXiv:nlin/0602029v1 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  11. B. A. Carreras, V. E. Lynch, and G. M. Zaslavsky, Phys. Plasmas, 8, 5096–5103 (2001).

    Article  ADS  Google Scholar 

  12. V. E. Tarasov, Phys. Plasmas, 12, 082106 (2005).

    Article  ADS  Google Scholar 

  13. G. M. Zaslavsky, Phys. D, 76, 110–122 (1994).

    Article  MathSciNet  Google Scholar 

  14. R. R. Nigmatullin, Phys. A, 363, 282–298 (2006).

    Article  Google Scholar 

  15. G. M. Zaslavsky and M. A. Edelman, Phys. D, 193, 128–147 (2004).

    Article  MathSciNet  Google Scholar 

  16. N. Laskin and G. M. Zaslavsky, Phys. A, 368, 38–54 (2006); arXiv:nlin/0512010v2 (2005).

    Article  Google Scholar 

  17. V. E. Tarasov and G. M. Zaslavsky, Chaos, 16, 023110 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. V. Uchaikin, Phys. Usp., 46, 821–849 (2003).

    Article  ADS  Google Scholar 

  19. N. Laskin, Phys. Lett. A, 268, 298–305 (2000); arXiv:hep-ph/9910419v2 (1999); Phys. Rev. E, 62, 3135–3145 (2000); arXiv:0811.1769v1 [math-ph] (2008).

    Article  ADS  MathSciNet  Google Scholar 

  20. X. Guo and M. Xu, J. Math. Phys., 47, 082104 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Dong and M. Xu, J. Math. Phys., 48, 072105 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Herrmann, Gam. Ori. Chron. Phys., 1, 1–12 (2013); arXiv:1210.4410v2 [math-ph] (2012).

    Google Scholar 

  23. R. Herrmann, Cent. Eur. J. Phys., 11, 1212–1220 (2013); arXiv:1308.4587v2 [physicsgen-ph] (2013).

    Google Scholar 

  24. Z. Korichi and M. T. Meftah, J. Math. Phys., 55, 033302 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  25. Z. Z. Alisultanov and R. P. Meylanov, Theor. Math. Phys., 171, 769–779 (2012).

    Article  Google Scholar 

  26. N. Laskin, Phys. Rev. E, 66, 056108 (2002); arXiv:quant-ph/0206098v1 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  27. N. Laskin, “Principles of fractional quantum mechanics,” arXiv:1009.5533v1 [math-ph] (2010).

  28. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Natl. Bur. Stds. Appl. Math. Ser., vol. 55), Dover, New York (1972).

  29. K. Huang, Statistical Mechanics, Wiley, New York (1963).

    Google Scholar 

  30. Z. Yan, Eur. J. Phys., 21, 625–631 (2000).

    Article  ADS  Google Scholar 

  31. G. Su, Y. Cai, and J. Chen, J. Phys. A: Math. Theor., 42, 125003 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Luca, J. Math. Phys., 41, 8016–8024 (2000).

    Article  MathSciNet  Google Scholar 

  33. Z. Yan, M. Li, L. Chen, C. Chen, and J. Chen, J. Phys. A: Math. Gen., 32, 4069–4078 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Korichi.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 186, No. 3, pp. 433–442, March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korichi, Z., Meftah, M.T. Quantum statistical systems in D-dimensional space using a fractional derivative. Theor Math Phys 186, 374–382 (2016). https://doi.org/10.1134/S0040577916030065

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916030065

Keywords

Navigation