Skip to main content
Log in

On the Influence of the Rayleigh–Taylor Instability on the Formation of Dust Clouds in the Mesosphere of Mars

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

A theoretical model is presented that describes the settling regime of plasma-dust clouds in the mesosphere of Mars. The values of the characteristic sizes of cloud dust particles predicted by the model are calculated. It is shown that an important factor influencing the formation of plasma-dust structures in the Martian atmosphere is the Rayleigh–Taylor instability, which limits (from above) the permissible sizes of dust particles in the cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Altunin, V.V., Teplofizicheskie svoistva dvuokisi ugleroda (Thermophysical Properties of Carbon Dioxide), Moscow: Izd. standartov, 1975.

  2. Barnes, M.S., Keller, J.H., Forster, J.C., O’Neill, J.A., and Coultas, D.K., Transport of dust particles in glow-discharge plasmas, Phys. Rev. Lett., 1992, vol. 68, pp. 313–316.

    Article  ADS  Google Scholar 

  3. Dubinskii, A.Yu. and Popel, S.I., Formation and evolution of dusty plasma structures in the ionosphere, JETP Lett., 2012, 96, no. 1, pp. 21–26.

    Article  ADS  Google Scholar 

  4. Dubinskii, A.Yu., Reznichenko, Yu.S., and Popel, S.I., Formation and evolution of dusty plasma structures in the ionospheres of the Earth and Mars, Plasma Phys. Rep., 2019, vol. 45, no. 10, pp. 928–935.

    Article  ADS  Google Scholar 

  5. Dubinsky, A.Yu., Reznichenko, Yu.S., and Popel, S.I., On the kinetic features of sedimentation of dust particles in the Martian atmosphere, Sol. Syst. Res., 2023, vol. 57, no. 3, pp. 214–220.

    Article  ADS  Google Scholar 

  6. Forget, F., Montmessin, F., Bertaux, J.L., Gonzalez-Galindo, F., Lebonnois, S., Quemerais, E., Reberac, A., Dimarellis, E., and Lopez-Valverde, M.A., Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM, J. Geophys. Res., 2009, vol. 114, p. E01004.

    Article  ADS  Google Scholar 

  7. Fortov, V.E., Ivlev, A.V., Khrapak, S.A., Khrapak, A.G., and Morfill, G.E., Complex (dusty) plasmas: Current status, open issues, perspectives, Phys. Rep., 2005, vol. 421, pp. 1–103.

    Article  ADS  MathSciNet  Google Scholar 

  8. Fox, J.L., Benna, M., Mahaffy, P.R., and Jakosky, B.M., Water and water ions in the Martian thermosphere/ionosphere, Geophys. Res. Lett., 2015, vol. 42, pp. 8977–8985.

    Article  ADS  Google Scholar 

  9. Hayne, P.O., Paige, D.A., Schofield, J.T., Kass, D.M., Kleinbohl, A., Heavens, N.G., and McCleese, D.J., Carbon dioxide snow clouds on Mars: South polar winter observations by the Mars climate sounder, J. Geophys. Res., 2012, vol. 117, p. E08014.

    Article  ADS  Google Scholar 

  10. Izvekova, Yu.N. and Popel, S.I., Plasma effects in dust devils near the Martian surface, Plasma Phys. Rep., 2017, vol. 43, no. 12, pp. 1172–1178.

    Article  ADS  Google Scholar 

  11. Klumov, B.A., Morfill, G.E., and Popel, S.I., Formation of structures in a dusty ionosphere, J. Exp. Theor. Phys., 2005a, vol. 100, pp. 152–164.

    Article  ADS  Google Scholar 

  12. Klumov, B.A., Vladimirov, S.V., and Morfill, G.E., Features of dusty structures in the upper Earth’s atmosphere, JETP Lett., 2005b, vol. 82, pp. 632–637.

    Article  ADS  Google Scholar 

  13. Klumov, B.A., Popel, S.I., and Bingham, R., Dust particle charging and formation of dust structures in the upper atmosphere, JETP Lett., 2000, vol. 72, no. 7, pp. 364–368.

    Article  ADS  Google Scholar 

  14. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika. Chast’ 1 (Statistical Physics. Part 1), Moscow: Nauka, 1976.

  15. Montmessin, F., Bertaux, J.L., Quémerais, E., Korablev, O., Rannou, P., Forget, F., Perriera, S., Fussend, D., Lebonnoisc, S., and Rébéraca, A., Subvisible CO2 ice clouds detected in the mesosphere of Mars, Icarus, 2006, vol. 183, pp. 403–410.

    Article  ADS  Google Scholar 

  16. Montmessin, F., Gondet, B., Bibring, J.P., Langevin, Y., Drossart, P., Forget, F., and Fouchett, T., Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars, J. Geophys. Res., 2007, vol. 112, p. E11S90. NEWSru.com. Curiosity rover captures rare Martian clouds. www.newsru.com/hitech/30may2021/mars_ clouds.html.

  17. Popel, S.I., Kopnin, S.I., Yu, M.Y., Ma, J.X., and Huang, F., The effect of microscopic charged particulates in space weather, J. Phys. D: Appl. Phys., 2011, vol. 44, p. 174036.

    Article  ADS  Google Scholar 

  18. Reznichenko, Yu.S., Dubinskii, A.Yu., and Popel, S.I., On dusty plasma formation in Martian ionosphere, J. Phys.: Conf. Ser., 2020, vol. 1556, p. 012072.

    Google Scholar 

  19. Savel’ev, R.S., Rozanov, N.N., Sochilin, G.B., and Chivilikhin, S.A., Rayleigh-Taylor instability of dusty gas, Nauchno-Tekh. Vestn. S.-Peterb. Gos. Univ. Inf. Tekhnol., Mekh. Opt., 2011, vol. 73, no. 3, pp. 18–22.

    Google Scholar 

  20. Shematovich, V.I., Bisikalo, D.V., and Zhilkin, A.G., Effect of variations in the extended hydrogen corona of Mars on the efficiency of charge exchange with solar wind protons, Astron. Rep., 2021, vol. 65, no. 3, pp. 203–208.

    Article  ADS  Google Scholar 

  21. Shukla, P.K. and Mamun, A.A., Introduction to Dusty Plasmas Physics, Bristol: Inst. Phys. Publ., 2002.

    Book  Google Scholar 

  22. Tsytovich, V.N., Morfill, G.E., Vladimirov, S.V., and Thomas, H., Elementary Physics of Complex Plasmas, Berlin: Springer, 2008.

    Book  Google Scholar 

  23. von Zahn, U., Baumgarten, G., Berger, U., Fiedler, J., and Hartogh, P., Noctilucent clouds and the mesospheric water vapour: The past decade, Atmos. Chem. Phys., 2004, vol. 4, pp. 2449–2464.

    Article  ADS  Google Scholar 

  24. Whiteway, J.A., Komguem, L., Dickinson, C., Cook, C., Illnicki, M., Seabrook, J., Popovici, V., Duck, T.J., Davy, R., Taylor, P.A., Pathak, J., Fisher, D., Carswell, A.I., Daly, M., Hipkin, V., Zent, A.P., Hecht, M.H., Wood, S.E., Tamppari, L.K., Renno, N., Moores, J.E., Lemmon, M.T., Daerden, F., and Smith, P., Mars water-ice clouds and precipitation, Science, 2009, vol. 325, no. 5936, pp. 68–70.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Foundation for the Development of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. S. Reznichenko or S. I. Popel.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznichenko, Y.S., Dubinskii, A.Y. & Popel, S.I. On the Influence of the Rayleigh–Taylor Instability on the Formation of Dust Clouds in the Mesosphere of Mars. Sol Syst Res 58, 263–268 (2024). https://doi.org/10.1134/S0038094624700187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094624700187

Keywords:

Navigation