Skip to main content
Log in

On the Theory of an Inverse Energy Cascade in Helical Turbulence of a Nonmagnetic Astrophysical Disk

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

In this article, the possibility of influence of the hydrodynamic helicity appearing in a rotating disk on synergetic structuring of cosmic substance and on the emergence of the negative turbulent viscosity effect in it is investigated. It is shown that prolonged turbulence damping in a disk can be partly associated with the absence of reflection symmetry of the anisotropic field of turbulent velocities relative to its equatorial plane. It is shown that negative viscosity in the rotating disk system is apparently a manifestation of cascade processes in helical turbulence, when the inverse energy transfer from small to larger vortices occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. As the averaging operation, we will henceforth use the statistical–analytical averaging over the ensemble of possible realizations of random thermo- and hydrodynamic fields [9].

  2. It should be recalled that the true 2D turbulence is not realized in actual fluid flows because the mechanism of the vertex field intensification due to extension of vortex tubes, which underlies the energy transfer to small scales (with simultaneous increase of vorticity), is basically three-dimensional by nature.

  3. It should be noted that a huge number of publications devoted to simulation of the evolution of gyrotropic MHD turbulence in astrophysical disks has appeared in recent decade.

  4. It should be noted that equation (1.3) for heat influx is written here for developed turbulence, when a quasi-stationary state is stabilized in the pulsation field structure, for which turbulent energy b is approximately conserved in time as well as in space [49].

  5. The spatial averaging of hydrodynamic equations for an instantaneous flow precluding the Reynolds postulate concerning the commutativity of averaging and differentiation operations gives an averaged motion equation with asymmetric Reynolds tensor Rij \( \equiv {{Q}_{{ij}}}({\mathbf{x}},0,t,0)\), where Qij(x, ξ, t, τ) = \(\left\langle {u_{i}^{{\text{'}}}({\mathbf{x}},t)u_{j}^{{\text{'}}}({\mathbf{x}} + \xi ,t + \tau )} \right\rangle \) is a second-order asymmetric correlation tensor [55]. It should also be noted that even in the original publication by Reynolds [56], where velocity fields were averaged over the volume and different average values were ascribed to the center of mass of this volume, components Rij and Rji of turbulent stresses were assumed to be different.

  6. Asymmetric hydromechanics of the Kosser brothers was widely recognized long ago, for example, in the theory of liquid crystals and in the liquid helium theory.

  7. This opinion contradicts the Moffat conception [20] that preserves the symmetry of the turbulent stress tensor.

  8. It is important to note that the dissipative helicity scale lh generally does not coincide with Kolmogorov scale lν, but ratio lν/lh \( \approx \) ν9/28 of these two scales tends to zero for large Reynolds numbers (low viscosity). This means that helicity does not reach the small-scale part of the spectrum [73].

  9. It should be recalled that when individual vortex filament Cj is wound around itself before forming a loop, it acquires a knot. Vortex helicity precisely determines the number of knotted and entangled vortex tubes in the volume occupied by the fluid: h = \(\sum\nolimits_{ij} {2{{\alpha }_{{ij}}}{{\Gamma }_{i}}{{\Gamma }_{j}}} \); here, αij are the looping coefficients of vortex filaments, which are positive and negative numbers associated with the number of turns of filament Ci around another filament Cj; Γj is the circulation of an individual vortex filament [18, 19]. Therefore, large-scale loops of vortex filaments appear in the turbulent flow under investigation during the generation of vortex helicity.

  10. It should be noted, however, that there exist other numerical calculations of a turbulent flow of an isotropic inhomogeneous fluid, in which such a correlation between local helicity and dissipation of small-scale kinetic energy is not observed [83, 84].

REFERENCES

  1. Brown, G.L. and Roshko, A., On density effects and large structures in turbulent mixing layers, J. Fluid Mech., 1974, vol. 64, pp. 775–816.

    Article  ADS  Google Scholar 

  2. Crow, S.C. and Champagne, F.H., Orderly structures in jet turbulence, J. Fluid Mech., 1971, vol. 48, pp. 547–591.

    Article  ADS  Google Scholar 

  3. Rabinovich, M.I. and Sushchik, M.M., The regular and chaotic dynamics of structures in fluid flows, Sov. Phys. Usp., 1990, vol. 33, no. 1, pp. 1–35.

    Article  ADS  MathSciNet  Google Scholar 

  4. Klimontovich, Yu.L., Vvedenie v fiziku otkrytykh system (Introduction to Open Systems Physics), Moscow: TOO Yanus-K, 2002.

  5. Khlopkov, Yu.I., Zharov, V.A., and Gorelov, S.L., Kogerentnye struktury v turbulentnom pogranichnom sloe (Coherent Structures in a Turbulent Boundary Layer), Moscow: Mos. Fiz. Tekh. Inst., 2002.

  6. Kolesnichenko, A.V. and Marov, M.Ya., Thermodynamic model of MHD turbulence and some of its applications to accretion disks, Sol. Syst. Res., 2008, vol. 42, no. 3, pp. 226–255.

    Article  ADS  Google Scholar 

  7. Van Dyke, M., An Album of Fluid Motion, Stanford, CA: Parabolic Press, 1982.

    Book  Google Scholar 

  8. Frisch, U., Turbulence: The Legacy of A. N. Kolmogorov, Cambridge: Cambridge Univ. Press, 1995.

    Book  Google Scholar 

  9. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidrodinamika (Statistical Hydrodynamics), St. Petersburg: Gidrometeoizdat, 1996, vol. 2.

  10. Kolmogorov, A.N., Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, pp. 299–303.

    ADS  Google Scholar 

  11. Kolmogorov, A.N., Clarification of ideas about the local structure of turbulence in an incompressible viscous fluid at high Reynolds numbers, in Mechanics of Turbulence: Colloq. Int. CNRS, Marseille, August–September, 1961, Paris, 1962, pp. 447–458.

  12. Obukhov, A.M., On the distribution of energy in the spectrum of turbulent flow, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 1941, vol. 5, no. 4, pp. 453–466.

    Google Scholar 

  13. Vainshtein, S.I., Zel’dovich Ya.B., and Ruzmaikin, A.A., Turbulentnoe dinamo v astrofizike (Turbulent Dynamo in Astrophysics), Moscow: Nauka, 1980.

  14. Krause, F. and Rädler, K.-H., Mean-Field Magnetodynamics and Dynamo Theory, Berlin: Akademie-Verlag 1980.

    Google Scholar 

  15. Zel’dovich, Ya.B., Ruzmaikin, A.A., and Sokolov, D.D., Magnitnye polya v astrofizike (Magnetic Fields in Astrophysics), Moscow–Izhevsk: NITS “Regulyarnaya i khaoticheskaya dinamika.” Inst. Komp’yut. Issled., 2006.

  16. Moffatt, H.K., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 1969, vol. 35, pp. 117–129.

    Article  ADS  Google Scholar 

  17. Steenbeck, M., Krause, F., and Radler, K.-H., A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion, under the influence of Coriolis forces, Z. Naturforsch., 1966, vol. 21a, pp. 369–376.

    Article  ADS  Google Scholar 

  18. Saffman, P.G., Vortex Dynamics, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

  19. Arnol’d, V.I. and Khesin, B.A., Topologicheskie metody v gidrodinamike (Topological Methods in Hydrodynamics), Moscow: MTsNMO, 2007.

  20. Moffat, H.K., Magnetic Field Generation in Electrically Conducting Fluids, Cambridge: Cambridge Univ. Press, 1978.

    Google Scholar 

  21. Parker, E., Cosmical Magnetic Fields. Their Origin and Their Activity, Oxford: Clarendon Press, 1979.

    Google Scholar 

  22. Brandenburg, A., Dobler, W., and Subramanian, K., Magnetic helicity in stellar dynamos: New numerical experiments, Astronomische Nachrichten, 2002, vol. 323, pp. 99–122.

    Article  ADS  Google Scholar 

  23. Brissaund, A., Frisch, U., Leorat, J., Lessieur, M., and Mazure, A., Helicity cascade in fully developed turbulence, Phys. Fluids, 1973, vol. 16, pp. 1366–1367.

    Article  ADS  Google Scholar 

  24. Lesieur, M., Turbulence in Fluids, Dordrecht: Springer, 2008, 4th ed.

    Book  Google Scholar 

  25. Pouquet, A. and Mininni, P.D., The interplay between helicity and rotation in turbulence: implications for scaling laws and small-scale dynamics, Phys. Fluids, 2009. http://arXiv.org/abs/0910.4522v1.[physics.flu-dyn].

  26. Mininni, P.D., Alexakis, A., and Pouquet, A., Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers, Phys. Fluids, 2009, vol. 21, p. 015108.

    Article  ADS  Google Scholar 

  27. Mininni, P.D. and Pouquet, A., Helicity cascades in rotating turbulence, Phys. Rev. E, 2009a, vol. 79, p. 026304.

    Article  ADS  Google Scholar 

  28. Mininni, P.D. and Pouquet, A., Rotating helical turbulence. Part I. Global evolution and spectral behavior, Phys. Rev. E, 2009b, arXiv: 0909.1272.

  29. Mininni, P.D. and Pouquet, A., Helical rotating turbulence. Part II. Intermittency, scale invariance and structures, Phys. Rev. E, 2009c, arXiv: 0909.1275.

  30. Kraichnan, R.H., Helical turbulence and absolute equilibrium, J. Fluid Mech., 1973, vol. 59, pp. 745–752.

    Article  ADS  Google Scholar 

  31. Kraichnan, R.H., Diffusion of passive-scalar and magnetic fields by helical turbulence, J. Fluid Mech., 1976a, vol. 77, pp. 753–774.

    Article  ADS  Google Scholar 

  32. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Khomenko, G.A., and Yanovskii, V.V., Theory of the emergence of large-scale structures in hydrodynamic turbulence, Zh. Eksp. Teor. Fiz., 1983b, vol. 85, no. 6 (12), pp. 1979–1987.

  33. Moiseev, S.S., Rutkevich, P.B., Tur, A.V., and Yanovskii, V.V., Vortex dynamo in a convective medium with helical turbulence, Zh. Eksp. Teor. Fiz., 1988, vol. 94, no. 2, pp. 144–153.

    ADS  Google Scholar 

  34. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Khomenko, G.A., and Shukurov, A.M., Physical mechanism of amplification of vortex disturbances in the atmosphere, Dokl. Akad. Nauk SSSR, 1983a, vol. 273, no. 3, pp. 549–552.

    Google Scholar 

  35. Moiseev, S.S. and Chkhetiani, O.G., The helical scaling of turbulence, JETP, 1996, vol. 110, no. 7, pp. 357–371.

    Google Scholar 

  36. Branover, H., Moiseev, S.S., Golbraikh, E., and Eidelman, A., Turbulence and Structures: Chaos, Fluctuations, and Helical Self-Organization in Nature and Laboratory, San Diego: Academic Press, 1999.

    Google Scholar 

  37. Starr, V., Physics of Negative Viscosity Phenomena, New York: McGraw-Hill, 1968.

    Google Scholar 

  38. Monin, A.S., Polubarinova-Kochina, P.Ya., and Khlebnikov, V.I., Kosmologiya, gidrodinamika, turbulentnost’: A.A. Fridman i razvitie ego nauchnogo naslediya (Cosmology, Hydrodynamics, Turbulence: A.A. Fridman and the Development of His Scientific Heritage), Moscow: Nauka, 1989.

  39. Vergassola, M., Gama, S., and Frisch, U., Proving the existence of negative isotropic eddy viscosity, in NATO-ASI: Solar and Planetary Dynamos, Proctor, M.R.E., Mathews, P.C., and Rucklidge, A.M., Eds., Cambridge: Cambridge Univ. Press, 1993, pp. 321–327.

    Google Scholar 

  40. Sivashinsky, G.I. and Frenkel, A.L., On negative eddy viscosity under conditions of isotropy, Phys. Fluids, 1992, vol. A4, pp. 1608–1610.

    Article  ADS  MathSciNet  Google Scholar 

  41. Gama, S., Vergassola, M., and Frisch, U., Negative eddy viscosity in isotropically forced two-dimensional flow: Linear and nonlinear dynamics, J. Fluid Mech., 1994, vol. 260, pp. 95–126.

    Article  ADS  MathSciNet  Google Scholar 

  42. Bodenheimer, P., Angular momentum evolution of young stars and disks, Ann. Rev. Astron. Astrophys., 1995, vol. 33, pp. 199–238.

    Article  ADS  Google Scholar 

  43. Klahr, H.H. and Bodenheimer, P., Turbulence in accretion disks: Vorticity generation and angular momentum transport via the global baroclinic instability, Astrophys. J., 2003, vol. 582, pp. 869–892.

    Article  ADS  Google Scholar 

  44. Berezin, Yu.A. and Zhukov, V.P., Convective instability in a medium with spiral turbulence, J. Appl. Mech. Tech. Phys., 1990, vol. 31, no. 1, pp. 57–61.

    Article  ADS  MathSciNet  Google Scholar 

  45. Berezin, Yu.A. and Trofimov, V.M., Large-scale vortex generation driven by nonequilibrium turbulence, Fluid Dyn., 1996, vol. 31, no. 1, pp. 39–46.

    Article  ADS  Google Scholar 

  46. Levina, G.V., Parameterization of helical turbulence in numerical models of intense atmospheric vortices, Dokl. Earth Sci., 2006, vol. 411A, no. 9, pp. 1417–1421.

    Article  ADS  Google Scholar 

  47. Dubrulle, B. and Valdettaro, L., Consequences of rotation in energetics of accretion disks, Astron. Astrophys., 1992, vol. 263, pp. 387–400.

    ADS  Google Scholar 

  48. Smith, L.M., Chasnov, J., and Waleffe, F., Crossover from two- to three-dimensional turbulence, Phys. Rev. Lett., 1996, vol. 77, pp. 2467–2470.

    Article  ADS  Google Scholar 

  49. Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ i samoorganizatsiya. Problemy modelirovaniya kosmicheskikh i prirodnykh sred (Turbulence and Self-Organization. Problems of Modeling Space and Natural Environments), Moscow: BINOM. Laboratoriya znanii, 2009.

  50. Lin, C.C. and Shu, F.H.-S., Density wave theory of spiral structure, Astrophysics and General Relativity, 1968, vol. 2, pp. 236–329.

    Google Scholar 

  51. de Groot, S. and Mazur, P., Non-equilibrium Thermodynamics, Amsterdam: North-Holland, 1963.

    Google Scholar 

  52. Kolesnichenko, A.V., A synergetic approach to the description of advanced turbulence, Sol. Syst. Res., 2002, vol. 36, no. 2, pp. 107–124.

    Article  ADS  Google Scholar 

  53. Prigozhin, I. and Stengers, I., Poryadok iz khaosa. Novyi dialog cheloveka s prirodoi (Order Out of Chaos. A New Dialogue between Human and Nature), Moscow: Progress, 1986.

  54. Khapaev, A.A., Generation of vortex structures in the atmosphere under the influence of spiral turbulence of convective origin, Izv. Ross. Akad. Nauk, Fiz. Atmos. Okeana, 2002, vol. 38, no. 3, pp. 331–336.

    MathSciNet  Google Scholar 

  55. Nikolaevskii, V.N., Spatial averaging and turbulence theory, in Vikhri i volny (Vortices and Waves), Moscow: Mir, 1984, pp. 266–335.

  56. Reynolds, O., On the dynamical theory of turbulent incompressible viscous fluids and the determination of the criterion, Phil. Trans. R. Soc. London A, 1894, vol. 186, pp. 123–161.

    ADS  Google Scholar 

  57. Rüdiger, G., Reynolds stresses and differential rotation. I—On recent calculations of zonal fluxes in slowly rotating stars, Geophys. Astrophys. Fluid Dyn., 1980a, vol. 16, pp. 239–261.

    Article  ADS  Google Scholar 

  58. Rüdiger, G., On negative eddy viscosity in MHD turbulence, Magnetic Hydrodynamics (Riga), 1980b, no. 1, pp. 3–14.

  59. Rüdiger, G., On turbulent heat transport in rotating convective zones, Astron. Nachr., 1982, vol. 303, pp. 293–303.

    Article  ADS  MathSciNet  Google Scholar 

  60. Berezin, Yu. and Trofimov, V.M., A model of non-equilibrium turbulence with an asymmetric stress. application to the problems of thermal convection, Continuum Mech. Thermodyn., 1995, vol. 7, pp. 415–437.

    Article  ADS  MathSciNet  Google Scholar 

  61. Krause, F. and Rüdiger, G., On the Reynolds stresses in mean-field hydrodynamics. I. Incompressible homogeneous isotropic turbulence, Astron. Nachr., 1974a, vol. 295, no. 2, pp. 93–99.

    Article  ADS  Google Scholar 

  62. Krause, F. and Rüdiger, G., On the Reynolds stresses in mean-field hydrodynamics. II. Two-dimensional turbulence and the problem of negative viscosity, Astron Nachr., 1974b, vol. 295, no. 4, pp. 185–193.

    Article  ADS  Google Scholar 

  63. Rüdiger, G., On the Reynolds stresses in mean-field hydrodynamics. III. Two-dimensional turbulence and the problem of differential rotation, Astron Nachr., 1974, vol. 295, no. 5, pp. 229–235.

    Article  ADS  Google Scholar 

  64. Kolesnichenko, A.V., On the simulation of helical turbulence in an astrophysical nonmagnetic disk, Sol. Syst. Res., 2011, vol. 45, no. 3, pp. 246–263.

    Article  ADS  Google Scholar 

  65. Yoshizawa, A., Self-consistent turbulent dynamo modeling of reversed field pinches and planetary magnetic fields, Phys. Fluids, 1990, vol. 2, no. 7, pp. 1589–1600.

    Article  Google Scholar 

  66. Ferrari, C., On the differential equations of turbulent flow, in Mekhanika sploshnoi sredy i rodstvennye problemy analiza (Continuum Mechanics and Related Problems of Analysis), Moscow: Nauka, 1972.

  67. Nikolaevskii, V.N., Stress tensor and averaging in mechanics of continuous media, J. Appl. Math. Mech., 1975, 39, no. 2, pp. 351–356.

    Article  Google Scholar 

  68. Nikolaevskiy, V.N., Angular Momentum in Geophysical Turbulence, Dordrecht: Kluwer Academic Publishers, 2003.

    Book  Google Scholar 

  69. Kolesnichenko, A.V. and Marov, M.Ya., The role of hydrodynamic helicity in the evolution of a protoplanetary turbulent disk, Mat. Model., 2007, vol. 20, no. 10, pp. 99–125.

    Google Scholar 

  70. Kichatinov, L.L. and Rüdiger, G., Λ-effect and differential rotation in stellar convection zones, Astron. Astrophys., 1993, vol. 276, pp. 96–102.

    ADS  Google Scholar 

  71. Heinloo, J., Setup of turbulence mechanics accounting for a preferred orientation of eddy rotation, Concepts of Physics, 2008, vol. 5, no. 2, pp. 205–218.

    Article  ADS  Google Scholar 

  72. Marov, M.Ya., Kolesnichenko, A.V., Makalkin, A.B., Dorofeeva, V.A., and Ziglina, I.N., From protosolar cloud to planetary system: A model of the early evolution of a gas-dust disk, in Kollektivnaya monografiya “Problemy zarozhdeniya i evolyutsii biosfery” (Collective Monograph “Problems of the Origin and Evolution of the Biosphere”), Galimov, E.M., Ed., Moscow: Knizhnyi dom LIBROKOM, 2008, pp. 223–275.

  73. Ditlevsen, P. and Giuliani, P., Dissipation in helical turbulence, Phys. Fluids, 2001, vol. 13, pp. 3508–3509.

    Article  ADS  Google Scholar 

  74. Chen, Q., Chen, S., and Eyink, G., The joint cascade of energy and helicity in three-dimensional turbulence, Phys. Fluids, 2003, vol. 15, no. 2, pp. 361–374.

    Article  ADS  MathSciNet  Google Scholar 

  75. Andre, J.D. and Lesieur, M., Evolution of high Reynolds number isotropic three-dimensional turbulence; influence of helicity, J. Fluid Mech., 1977a, vol. 81, pp. 187–208.

    Article  ADS  Google Scholar 

  76. Moffatt, H.K. and Tsinober, A., Helicity in laminar and turbulent flow, Ann. Rev. Fluid Mech., 1992, vol. 24, pp. 281–312.

    Article  ADS  MathSciNet  Google Scholar 

  77. Andre, J.C. and Lesieur, M., Influence of helicity on high Reynolds number isotropic turbulence, J. Fluid Mech., 1977b, vol. 81, pp. 187–207.

    Article  ADS  Google Scholar 

  78. Borue, J. and Orszag, S.A., Spectra in helical three-dimensional isotropic turbulence, Phys. Rev. E, 1997, vol. 55, pp. 7005–7009.

    Article  ADS  MathSciNet  Google Scholar 

  79. Tsinober, A. and Levitch, E., On the helical nature of three-dimensional coherent structures in turbulent flows, Phys. Lett., 1983, vol. 99A, pp. 321–324.

    Article  ADS  Google Scholar 

  80. Moffatt, H.K., Geophysical and astrophysical turbulence, in Advances in Turbulence, Comte-Bellot, G. and Mathieu, J., Eds., Cham: Springer, 1986, pp. 228–244.

    Google Scholar 

  81. Shtilman, L., Levich, E., Orszag, S.A., Pelz, R.B., and Tsinober, A., On the role of helicity in complex fluid flows, Phys. Lett., 1985, vol. 113A, pp. 32–37.

    Article  ADS  Google Scholar 

  82. Kerr, B.W. and Darkow, G.L., Storm-relative winds and helicity in the tornadic thunderstorm environment, Weather Forecast., 1996, vol. 11, pp. 489–496.

    Article  ADS  Google Scholar 

  83. Rogers, M.M. and Moin, P., The structure of the vorticity field in homogeneous turbulent flows, J. Fluid Mech., 1987a, vol. 176, pp. 33–66.

    Article  ADS  Google Scholar 

  84. Rogers, M.M. and Moin, P., Helicity fluctuations in incompressible turbulent flows, Phys. Fluids, 1987b, vol. 30, pp. 2662–2671.

    Article  ADS  Google Scholar 

  85. Zhou, Y., A phenomenological treatment of rotating turbulence, Phys. Fluids, 1995, vol. 7, pp. 2092–2099.

    Article  ADS  Google Scholar 

  86. Smith, L.M. and Waleffe, F., Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence, Phys. Fluids, 1999, vol. 11, pp. 1608–1622.

    Article  ADS  MathSciNet  Google Scholar 

  87. Sedov, L.I., Mysli ob uchenykh i nauke proshlogo i nastoyashchego (Thoughts on Scientists and Science Past and Present), Moscow: Nauka, 1973.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnichenko.

Ethics declarations

The author of this work declares that he has no conflict of interests.

Additional information

Translated by N. Wadhwa

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, A.V. On the Theory of an Inverse Energy Cascade in Helical Turbulence of a Nonmagnetic Astrophysical Disk. Sol Syst Res 57, 767–782 (2023). https://doi.org/10.1134/S0038094623070080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623070080

Navigation