Skip to main content
Log in

Conjugated Gaussian Random Particle Model and Its Applications for Interpreting Cometary Polarimetric Observations

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

This article presents a model of conjugated Gaussian random particles, which are convenient for simulation of irregular particles that constitute cometary dust. Computer simulation is conducted for the polarimetric properties of these particles; phase dependences are calculated for the linear polarization degree. The calculated results are used to interpret cometary polarimetric observations and determine possible physical and chemical characteristics of comets as well as the variation range within which the model adequately describes the observed data. The model calculations are used to refine the empirical formula that describes the phase dependence of the linear polarization degree for the cometary continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Bertaux, J.-L. and Lallement, R., Diffuse interstellar bands carriers and cometary organic material, Mon. Not. R. Astron. Soc., 2017, vol. 469, suppl. 2, pp. S646–S660.

    Article  Google Scholar 

  2. Bertini, I., Thomas, N., and Barbieri, C., Modeling of the light scattering properties of cometary dust using fractal aggregates, Astron. Astrophys., 2007, vol. 461, no. 1, pp. 351–364.

    Article  ADS  Google Scholar 

  3. Compilation of comet polarimetry from published and unpublished sources, in NASA Planetary Data System, Kiselev, N., Shubina, E., Velichko, S., Jockers, K., Rosenbush, V., and Kikuchi, S., Eds., Washington, DC: Natl. Aeronaut. Space Admin., 2017, no. pds:compil-comet:polarimetry.1.0. https://pdssbn.astro.umd.edu/holdings/pds4-compil-comet:polarimetry-v1.0/SUPPORT/dataset.html.

  4. Dobrovol’skii, O.V., Komety (Comets), Moscow: Nauka, 1966.

    Google Scholar 

  5. Dorschner, J., Begemann, B., Henning, T., Jäger, C., and Mutschke, H., Steps toward interstellar silicate mineralogy. II. Study of Mg–Fe-silicate glasses of variable composition, Astron. Astrophys., 1995, vol. 300, pp. 503–520.

    ADS  Google Scholar 

  6. Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B.N., Mishchenko, M., Yang, P., Eck, T.F., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W.J., Leon, J.-F., Sorokin, M., and Slutsker, I., Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res.: Atmos., 2006, vol. 111, art. ID D11208.

    Article  ADS  Google Scholar 

  7. Grynko, Ye. and Shkuratov, Yu., Scattering matrix for semitransparent particles of different shapes in geometric optics approximation, J. Quant. Spectrosc. Rad. Transf., 2003, vol. 78, nos. 3–4, pp. 319–340.

    Article  ADS  Google Scholar 

  8. Grynko, Y., Shkuratov, Y., and Förstner, J., Light scattering by randomly irregular dielectric particles larger than the wavelength, Opt. Lett., 2013, vol. 38, no. 23, pp. 5153–5156

    Article  ADS  Google Scholar 

  9. Grynko, Y., Shkuratov, Y., and Förstner, J., Light scattering by irregular particles much larger than the wavelength with wavelength-scale surface roughness, Opt. Lett., 2016, vol. 41, no. 15, pp. 3491–3494. https://doi.org/10.1364/OL.41.003491

    Article  ADS  Google Scholar 

  10. Jenniskens, P., Optical constants of organic refractory residue, Astron. Astrophys., 1993, vol. 274, pp. 653–661.

    ADS  Google Scholar 

  11. Kearsley, A.T., Borg, J., Graham, G.A., Burchell, M.J., Cole, H., Leroux, J.C., Bridges, F., Hörz, P.J., Wozniakiewicz, P.A., Bland, J.P., Bradley, Z.R., Dai, N., Teslich, T., See, P., Hoppe, P.R., et al., Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils, Meteor. Planet. Sci., 2008, vol. 43, pp. 41–73.

    Article  ADS  Google Scholar 

  12. Kimura, H., Kolokolova, L., and Mann, I., Optical properties of cometary dust: constraints from numerical studies on light scattering by aggregate particles, Astron. Astrophys., 2003, vol. 407, no. 1, pp. L5–L8.

    Article  ADS  Google Scholar 

  13. Kiselev, N.N., Rosenbush, V.K., Levasseur-Regourd, A.-Ch., and Kolokolova, L., Comets, in Polarimetry of Stars and Planetary Systems, Kolokolova, L., Hough, J., Levasseur-Regourd, A.-Ch., Eds., Cambridge: Cambridge Univ. Press, 2015, pp. 379–404.

    Google Scholar 

  14. Kolokolova, L., Kimura, H., and Mann, I., Characterization of dust particles using photopolarimetric data: example of cometary dust, in Photopolarimetry in Remote Sensing, Videen, G., Yatskiv, Ya., and Mishchenko, M., Eds., Dordrecht: Springer-Verlag, 2005, pp. 431–454.

    Google Scholar 

  15. Kolokolova, L., Kimura, H., Kiselev, N., and Rosenbush, V., Polarimetric and infrared evidence of two types of dust in comets, Astron. Astrophys., 2007, vol. 463, pp. 1189–1196.

    Article  ADS  Google Scholar 

  16. Kolokolova, L., Das, H., Dubovik, O., Lapyonok, T., and Yang, P., Polarization of cosmic dust simulated with the rough spheroid model, Planet. Space Sci., 2015, vol. 116, pp. 30–38.

    Article  ADS  Google Scholar 

  17. Lasue, J., Levasseur-Regourd, A.C., Hadamcik, E., and Alcouffe, G., Cometary dust properties retrieved from polarization observations: application to C/1995 O1 Hale–Bopp and 1P/Halley, Icarus, 2009, vol. 199, no. 1, pp. 129–144.

    Article  ADS  Google Scholar 

  18. Le Borgne, J.F., Leroy, J.L., and Arnaud, J., Polarimetry of visible and near-UV molecular bands: Comet P/Halley and Hartley–Good, Astron. Astrophys., 1987, vol. 173, pp. 180–182.

    ADS  Google Scholar 

  19. Li, A. and Greenberg, J.M., From interstellar dust to comets: infrared emission from comet Hale–Bopp (C/1995 O1), Astrophys. J., 1998, vol. 498, pp. L83–L87.

    Article  ADS  Google Scholar 

  20. Lumme, K. and Muinonen, K., A two-parameter system for linear polarization of some Solar System objects, Proc. 160th Symp. of the International Astronomical Union “Asteroids, Comets, Meteors,” LPI Contribution vol. 810, New York: Springer-Verlag, 1993, pp. 194–197.

  21. Lumme, K. and Penttilä, A., Model of light scattering by dust particles in the solar system: applications to cometary comae and planetary regoliths, J. Quant. Spectrosc. Radiat. Transf., 2011, vol. 112, no. 11, pp. 1658–1670.

    Article  ADS  Google Scholar 

  22. Merouane, S., Zaprudin, B., Stenzel, O., Langevin, Y., Altobelli, N., Della Corte, V., Fischer, H., Fulle, M., Hornung, K., Silén, J., Ligier, N., Rotundi, A., Ryno, J., Schulz, R., Hilchenbach, M., Kissel, J., et al., Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta, Astron. Astrophys., 2016, vol. 596, p. A87.

    Article  ADS  Google Scholar 

  23. Mishchenko, M.I. and Travis, L.D., Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation, Appl. Opt., 1994, vol. 33, no. 30, pp. 7206–7225.

    Article  ADS  Google Scholar 

  24. Mishchenko, M.I., Travis, L.D., and Mackowski, D.W., T-matrix computations of light scattering by nonspherical particles: a review, J. Quant. Spectrosc. Radiat. Transf., 1996, vol. 55, no. 5, pp. 535–575.

    Article  ADS  Google Scholar 

  25. Mishchenko, M.I., Travis, L.D., Kahn, R.A., and West, R.A., Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids, J. Geophys. Res.: Atmos., 1997, vol. 102, no. 14, pp. 16 831–16 847.

    Article  ADS  Google Scholar 

  26. Mishchenko, M.I., Travis, L.D., and Lacis, A.A., Scattering, Absorption, and Emission of Light by Small Particles, Cambridge: Cambridge Univ. Press, 2002.

    Google Scholar 

  27. Muinonen, K., Light scattering by Gaussian random particles, Earth, Moon, Planets, 1996, vol. 72, pp. 339–342.

    Article  ADS  Google Scholar 

  28. Muinonen, K., Introducing the Gaussian shape hypothesis for asteroids and comets, Astron. Astrophys., 1998, vol. 332, pp. 1087–1098.

    ADS  Google Scholar 

  29. Muinonen, K. and Saarinen, K., Ray optics approximation for Gaussian random cylinders, J. Quant. Spectrosc. Radiat. Transf., 2000, vol. 64, no. 2, pp. 201–218.

    Article  ADS  Google Scholar 

  30. Muinonen, K., Zubko, E., Tyynelä, J., Shkuratov, Yu.G., and Videen, G., Light scattering by Gaussian random particles with discrete-dipole approximation, J. Quant. Spectrosc. Radiat. Transf., 2007, vol. 106, pp. 360–377.

    Article  ADS  Google Scholar 

  31. Moreno, F., Muñoz, O., Guirado, D., and Vilaplana, R., Comet dust as a size distribution of irregularly shaped, compact particles, J. Quant. Spectrosc. Radiat. Transf., 2007, vol. 106, no. 1, pp. 348–359.

    Article  ADS  Google Scholar 

  32. Öhman, Y., Measurements of polarization in the spectra of comet Gunningham (1940 C) and comet Paraskevopoulos (1941 C), Stockholms Obs. Ann., 1941, vol. 13, no. 11, pp. 11.1–11.20.

  33. Petrov, D., Synelnyk, E., Shkuratov, Yu., and Videen, G., The T-matrix technique for calculations of scattering properties of ensembles of randomly oriented particles with different size, J. Quant. Spectrosc. Radiat. Transf., 2006, vol. 102, pp. 85–110.

    Article  ADS  Google Scholar 

  34. Petrov, D., Shkuratov, Yu., and Videen, G., Electromagnetic wave scattering from particles of arbitrary shapes, J. Quant. Spectrosc. Radiat. Transf., 2011, vol. 112, no. 11, pp. 1636–1645.

    Article  ADS  Google Scholar 

  35. Petrov, D., Shkuratov, Yu., and Videen, G., Light scattering by arbitrary shaped particles with rough surfaces: Sh-matrices approach, J. Quant. Spectrosc. Radiat. Transf., 2012, vol. 113, pp. 2406–2418.

    Article  ADS  Google Scholar 

  36. Petrova, E.V., Jockers, K., and Kiselev, N.N., Light scattering by aggregates with sizes comparable to the wavelength: an application to cometary dust, Icarus, 2008, vol. 148, no. 2, pp. 526–536.

    Article  ADS  Google Scholar 

  37. Rietmeijer, F.J.M., Nakamura, T., Tsuchiyama, A., Uesugi, K., Nakano, T., and Leroux, H., Origin and formation of iron silicide phases in the aerogel of the Stardust mission, Meteor. Planet. Sci., 2008, vol. 43, no. 1, pp. 121–134.

    Article  ADS  Google Scholar 

  38. Shen, Y., Draine, B.T., and Johnson, E.T., Modeling porous dust grains with ballistic aggregates. II. Light scattering properties, Astrophys. J., 2009, vol. 696, no. 2, pp. 2126.

    Article  ADS  Google Scholar 

  39. Shul’man, L.M., Dinamika kometnykh atmosfer. Neitral’nyi gaz (Dynamics of Comet Atmosphere. Neutral Gas), Kiev: Naukova Dumka, 1972.

  40. Stankevich, D., Shkuratov, Yu., Grynko, E., and Muinonen, K., Computer simulation of multiple scattering in random Gaussian media, J. Quant. Spectrosc. Radiat. Transf., 2003, vol. 76, no. 1, pp. 1–16.

    Article  ADS  Google Scholar 

  41. Stoyan, D. and Stoyan, H., Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics, Chichester: Wiley, 1994.

    MATH  Google Scholar 

  42. Voshchinnikov, N.V. and Das, H.K., Modeling interstellar extinction and polarization with spheroidal grains, J. Quant. Spectrosc. Radiat. Transf., 2008, vol. 109, no. 8, pp. 1527–1535.

    Article  ADS  Google Scholar 

  43. Waterman, P.C., Numerical solution of electromagnetic scattering problems, in Computer Techniques for Electromagnetics, Oxford: Pergamon, 1973, pp. 97–157.

    Google Scholar 

  44. Warren, S.G., Optical constants of ice from the ultraviolet to the microwave, Appl. Opt., 1984, vol. 23, no. 8, pp. 1206–1225.

    Article  ADS  Google Scholar 

  45. Zubko, E., Light scattering by cometary dust: Large-particle contribution, Earth, Planets Space, 2013, vol. 65, pp. 139–148. https://doi.org/10.5047/eps.2012.02.003

    Article  ADS  Google Scholar 

  46. Zubko, E., Petrov, D., Shkuratov, Y., and Videen, G., Discrete dipole approximation simulations of scattering by particles with hierarchical structure, Appl. Opt., 2005, vol. 44, pp. 6479–6485.

    Article  ADS  Google Scholar 

  47. Zubko, E., Shkuratov, Y., Kiselev, N., and Videen, G., DDA simulations of light scattering by small irregular particles with various structure, J. Quant. Spectrosc. Radiat. Transf., 2006, vol. 101, no. 3, pp. 416–434. https://doi.org/10.1016/j.jqsrt.2006.02.055

    Article  ADS  Google Scholar 

  48. Zubko, E., Muinonen, K., Shkuratov, Yu.G., Videen, G., and Nousiainen, T., Scattering of light by roughened Gaussian random particles, J. Quant. Spectrosc. Radiat. Transf., 2007, vol. 106, pp. 604–615.

    Article  ADS  Google Scholar 

  49. Zubko, E., Muinonen, K., Shkuratov, Yu., Hadamcik, E., Levasseur-Regourd, A.-C., and Videen, G., Evaluating the carbon depletion found by the Stardust mission in Comet 81P/Wild 2, Astron. Astrophys., 2012, vol. 544, p. L8.

    Article  ADS  Google Scholar 

  50. Zubko, E., Muinonen, K., Videen, G., and Kiselev, N., Dust in comet C/1975 V1 (West), Mon. Not. R. Astron. Soc., 2014, vol. 440, pp. 2928–2943.

    Article  ADS  Google Scholar 

  51. Zubko, E., Videen, G., Hines, D., Shkuratov, Y., Kaydash K., Muinonen, K., Knight M., Sitko M., Lisse C., Mutchler M., Li J.-Y., and Kobayashi H., Comet C/2012 S1 (ISON) coma composition at ~4 AU from HST observations, Planet. Space Sci., 2015, vol. 118, pp. 138–163. https://doi.org/10.1016/j.pss.2015.08.002

    Article  ADS  Google Scholar 

  52. Zubko, E., Videen, G., Hines, D., and Shkuratov, Y., The positive-polarization of cometary comae, Planet. Space Sci., 2016, vol. 123, pp. 63–76.

    Article  ADS  Google Scholar 

  53. Zubko, E., Videen, G., Shkuratov, Y., and Hines, D., On the reflectance of dust in comets, J. Quant. Spectrosc. Radiat. Transf., 2017, vol. 202, pp. 104–113.

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research and by the Republic of Crimea, project no. 18-42-910019\18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Petrov.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, D.V., Kiselev, N.N. Conjugated Gaussian Random Particle Model and Its Applications for Interpreting Cometary Polarimetric Observations. Sol Syst Res 53, 294–305 (2019). https://doi.org/10.1134/S0038094619040075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094619040075

Keywords:

Navigation