Skip to main content
Log in

Gravity Assist Maneuvers Near Venus for Exit to Non-Ecliptic Positions: Resonance Asymptotic Velocity

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

Venus, the closest planetary neighbor of the Earth in the Solar System, is eminently suitable for performing gravity assist maneuvers by a spacecraft for a low-cost change of its orbit inclination relative to the ecliptic. We calculate the resonance values of the spacecraft asymptotic velocity relative to the planet, such that each orbital period of the spacecraft after each gravity assist maneuver are commensurate with the few orbital period of Venus, providing a new encounter with it. This enables an increase in the orbital inclination of the spacecraft using gravity-assist maneuvers without transitions to adjacent resonances along the invariant line of the main resonance on \({{\operatorname{V} }_{\infty }}\)-sphere, reaching a maximum inclination. A Venusian invariant has been obtained that does not vary after performing gravity assist maneuvers near Venus. An adaptive semianalytic method and its geometric interpretation for creating a sequence of sequences of gravitational maneuvers near Venus for a low-cost changes in the orbital inclination of the spacecraft have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Golubev, Yu.F., Grushevskii, A.V., Koryanov, V.V., and Tuchin, A.G., Synthesis of space mission scenarios in the Jovian system using gravity assist maneuvers, Dokl. Phys., 2014, vol. 59, no. 5, pp. 226–228.

    Article  ADS  Google Scholar 

  2. Golubev, Yu.F., Grushevskii, A.V., Koryanov, V.V., Tuchin, A.G., and Tuchin, D.A., The variation of the orbital inclination of celestial bodies during a gravitational maneuver in the solar system, Preprint of the Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2016, no. 15.

  3. Golubev, Yu.F., Grushevskii, A.V., Koryanov, V.V., Tuchin, A.G., and Tuchin, D.A., A technique for designing highly inclined spacecraft orbits using gravity-assist maneuvers, Dokl. Phys., 2017a, vol. 62, no. 2, pp. 76–79.

    Article  ADS  MATH  Google Scholar 

  4. Golubev, Yu.F., Grushevskii, A.V., Koryanov, V.V., Tuchin, A.G., and Tuchin, D.A., Formation of high inclined orbits to the ecliptic by multiple gravity assist maneuvers, J. Comp. Syst. Sci. Int., 2017b, vol. 56, no. 2, pp. 275–299.

    Article  MATH  Google Scholar 

  5. Kawakatsu, Y.V., Direction diagram and its application to swing by design, Proc. 21st Int. Symp. on Space Flight Dynamics, Toulouse, France, September 28–October 2, 2009, Toulouse, 2009, pp. 1–14.

  6. Keldysh, M.V., vlasova, Z.P., Lidov, M.L., Okhotsimskii, D.E., and Platonov, A.K., The trajectories of the flyby of the Moon and analysis of the conditions for photographing and information transmitting, in Izbrannye trudy. Raketnaya tekhnika i kosmonavtika (Selected Research Works: Rockets and Astronautics), Moscow: Nauka, 1988, pp. 261–309.

  7. Labunsky, A.V., Papkov, O.V., and Sukhanov, K.G., Multiple Gravity Assist Interplanetary Trajectories, Earth Space Institute Book Series, Boca Raton: CRC Press, 1998, pp. 9–266.

  8. Miller, J.K. and Weeks, C.J., Application of Tisserand’s criterion to the design of gravity assist trajectories, Proc. AIAA Astrodynamics Specialist Conf., Monterey, CA, USA, Monterey, Ca: Am. Inst. Aeronaut. Astronaut., 2002, no. 2002-4717, pp. 1–7.

  9. Strange, N.J. and Russell, R., Buffington B. Mapping the V-infinity Globe, Proc. 17th AAS/AIAA Space Flight Mechanics Meeting, Springfield, VA: Am. Astronaut. Soc., 2007, no. 07-277.

  10. Subbotin, M.F., Vvedenie v teoreticheskuyu astronomiyu (Introduction into Theoretical Astronomy), Moscow: Nauka, 1968.

  11. Tisserand, F.F., Traité de Mécanique Céleste, Paris: Gauthier-Villars, 1896, vol. 4, pp. 203–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. F. Golubev, A. V. Grushevskii, V. V. Koryanov, A. G. Tuchin or D. A. Tuchin.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, Y.F., Grushevskii, A.V., Koryanov, V.V. et al. Gravity Assist Maneuvers Near Venus for Exit to Non-Ecliptic Positions: Resonance Asymptotic Velocity. Sol Syst Res 53, 245–253 (2019). https://doi.org/10.1134/S0038094619040038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094619040038

Keywords:

Navigation