Skip to main content
Log in

Application of Impulsive Aero-Gravity Assisted Maneuvers in Venus and Mars to Change the Orbital Inclination of a Spacecraft

  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Thse powered aero-gravity-assist is an orbital maneuver that combines three basic components: a gravity-assist with a passage by the atmosphere of the planet during the close approach and the application of an impulse during this passage. The mathematical model used to simulate the trajectories is the Restricted Three-Body Problem including the terms coming from the aerodynamic forces. The present paper uses this type of maneuver considering that the trajectory of the spacecraft is in the ecliptic plane and the presence of the atmospheric Drag and Lift forces. The maneuver in the ecliptic plane can be done due to technologies that provides spacecraft with high values for the Lift to Drag ratio. The main advantage is that this maneuver allows the modification of the semi-major axis of the orbit of the spacecraft using the gravity of the planet and, at the same time, to change the inclination, using the high Lift that is perpendicular to the ecliptic plane. So, it is a combined maneuver that changes two important orbital parameters at the same time. The Lift is applied orthogonal to the initial orbital plane to generate an inclination change in the trajectory of the spacecraft, which is a very expensive maneuvers when made using propulsion systems. The Lift to Drag ratio used in the present paper goes up to 9.0, because there are vehicles, like waveriders, designed to have these values. When the spacecraft is passing by the periapsis of its orbit, an instantaneous impulse is applied to increase or decrease the variation of energy given by the aero-gravity-assist maneuver. The planets Venus and Mars are selected to be the bodies for the maneuver, due to their atmospheric density and strategic location in the Solar System to provide possible uses for future missions. Results coming from numerical simulations show the maximum changes in the inclination obtained by the maneuvers, as a function of the approach angle and direction of the impulse; the Lift to Drag ratio and the ballistic coefficient. In the case of Mars, inclination changes can be larger than 13°, and for Venus larger than 21°. The energy and inclination variations are shown for several selected orbits. The powered aero-gravity-assist maneuver generates inclination changes that are higher than the ones obtained from the powered maneuver and/or the aero-gravity maneuver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Armellin, R., Lavagna, M., Ercoli-Finzi, A.: Aero-gravity assist maneuvers: controlled dynamics modeling and optimization. Periodic. Quasi-Periodic and Chaotic Motions in Celestial Mechanics: Theory and Applications. 391–405 (2006)

  2. Armellin, R., Lavagna, M., Starkey, R., Lewis, M.: Aerogravity-assist maneuvers: coupled trajectory and vehicle shape optimization. J. Spacecr. Rocket. 44(5), 1051–1059 (2007)

    Article  Google Scholar 

  3. Broucke, R.A.: The celestial mechanics of gravity assist. In: AIAA/AAS Astrodynamics Conference, Minneapolis, MN, August (1988) (AIAA paper 88–4220). https://doi.org/10.2514/6.1988-4220

  4. Casalino, L., Colasurdo, G., Pastrone, D.: Simple strategy for powered swing-by. J. Guid. Control. Dyn. 22(1), 156–159 (1999a)

    Article  Google Scholar 

  5. Casalino, L., Colasurdo, G., Pasttrone, D.: Optimal low-thrust scape trajectories using gravity assist. J. Guid. Control. Dyn. 22(5), 637–642 (1999b)

    Article  Google Scholar 

  6. D’Amario, L.A., Byrnes, D.V., Stanford, R.H.: A new method for optimizing multiple-flyby trajectories. J. Guid. Control. Dyn. 4, 591–596 (1981). https://doi.org/10.2514/3.56115

    Article  Google Scholar 

  7. D’Amario, L.A., Byrnes, D.V., Stanford, R.H.: Interplanetary trajectory optimization with application to Galileo. J. Guid. Control. Dyn. 5, 465–471 (1982). https://doi.org/10.2514/3.56194

    Article  Google Scholar 

  8. Deerwester, J.: Jupiter Swingby missions to the outer planets. J. Spacecr. Rocket. 3(10), 1564–1567 (1966)

    Article  Google Scholar 

  9. Elices, T.: Maximum Delta-V in the aerogravity assist maneuver. J. Spacecr. Rocket. 32(5), 921–922 (1995)

    Article  Google Scholar 

  10. Ferreira, A.F., Prado, A.F.B.A., Winter, O.C., Santos, D.P.S.: Effects of the eccentricity of the primaries in a powered swing-by maneuver. Adv. Space. Res. 59(8), 2071–2087 (2017a). https://doi.org/10.1016/j.asr.2017.01.033

    Article  Google Scholar 

  11. Ferreira, A.F., Prado, A.F.B.A., Winter, O.C.: A numerical mapping of energy gains in a powered swing-by maneuver. Nonlinear Dyn. 89(2), 791–818 (2017b). https://doi.org/10.1007/s11071-017-3485-2 To be published

    Article  Google Scholar 

  12. Ferreira, A.F.S., Prado, A.F.B.A., Winter, O.C.: A numerical study of powered swing-Bys around the moon. Adv. Space Res. 56, 252–272 (2015). https://doi.org/10.1016/j.asr.2015.04.016

    Article  Google Scholar 

  13. Flandro, G.: Fast reconnaissance missions to the outer solar system utilizing energy derived from the gravitational field of Jupiter. Earth. 108, 1–6 (1966)

    Google Scholar 

  14. Gomes, V., Piñeros, J., Prado, A., Golebiewska, J.: Atmospheric close approaches with the earth considering drag and lift forces. J. Comput. Appl. Math. 35, 817–833 (2016). https://doi.org/10.1007/s40314-015-0256-x

    MathSciNet  MATH  Google Scholar 

  15. Gomes, V.M., Prado, A.F.B.A.: Swing-by maneuvers for a cloud of particles with planets of the solar system. WSEAS Transactions on Applied and Theoretical Mechanics. 3(11), 869–878 (2008)

    Google Scholar 

  16. Grard, R.: Mercury: the messenger and BepiColombo missions a concerted approach to the exploration of the planet. Adv. Space Res. 38, 563 (2006). https://doi.org/10.1016/j.asr.2006.06.015

    Article  Google Scholar 

  17. Henning, G., Edelman, P., Longuski, M.: Design and optimization of interplanetary aerogravity-assist tours. J. Spacecr. Rocket. AIAA. 51, 1849–56, 1856 (2014)

  18. Hollister, W.M., Prussing, J.E.: Optimum transfer to Mars via Venus. Thermophysics Specialist Conference, Fluid Dynamics and Co-located Conferences. (1966). https://doi.org/10.2514/6.1965-700

  19. Johnson, W., Longuski, J.: Design of aerogravity-assist trajectories. J. Spacecr. Rocket. 39(1), 23–30 (2002)

    Article  Google Scholar 

  20. Lavagna, M., Povoleri, A., Finzi, A.: Interplanetary mission design with aero-assisted manoeuvres multi-objective evolutive optimization. Acta Astronaut. 57(2), 498–509 (2005)

    Article  Google Scholar 

  21. Lewis, M., McRolnald, A.: Design of hypersonic waveriders for aeroassited interplanetary trajectories. J. Spacecr Rocket. AIAA. 29–25 (1992)

  22. Lohar, A., Mateescu, D., Misra, K.: Optimal atmospheric trajectory for aero-gravity assist. Acta Astronaut. 32–32 (1994). https://doi.org/10.1016/0094-5765(94)90059

  23. Lohar, A., Misra, K., Mateescu, D.: Mars-Jupiter Aerogravity assist trajectories for high-energy missions. J. Spacecr. Rocket. 34(1), 16–21 (1997). https://doi.org/10.2514/2.3186

    Article  Google Scholar 

  24. Mazzaracchio, A.: Flight-path guidance for aerogravity-assit maneuvers on hyperbolic trajectories. J. Guid. Control Dynam. AIAA. 38(2), (2015)

  25. McNutt Jr., R.L., Solomon, S.C., Gold, R.E., Leary, J.C.: The messenger mission to mercury: development history and early mission status. Adv. Space Res. 38, 564–571 (2006). https://doi.org/10.1016/j.asr.2005.05.044

    Article  Google Scholar 

  26. McNutt Jr., R.L., Solomon, S.C., Grard, R., Novara, M., Mukai, T.: An international program for mercury exploration: synergy of messenger and Bepicolombo. Adv. Space Res. 33, 2126–2132 (2004). https://doi.org/10.1016/S0273-1177(03)00439-3

    Article  Google Scholar 

  27. Murcia, J.O., Prado, A.F.B.A., Gomes, M.: Retrograde and Direct Powered Aero-Gravity-Assist Trajectories around Mars. Rev. Mex. Astron. Astrofís. 54, 143–161 (2018)

  28. Negri, R.B., Prado, A.F.B.A., Sukhanov, A.: Studying the errors in the estimation of the variation of energy by the “patched-conics” model in the three-dimensional swing-by. Celest. Mech. Dyn. Astron. 129(3), 269–284 (2017). https://doi.org/10.1007/s10569-017-9779-3

    Article  MathSciNet  Google Scholar 

  29. Niehoff, J.C.: Gravity-assisted trajectories to solar-system. J. Spacecr. Rocket. 3(9), 1351–1356 (1966)

    Article  Google Scholar 

  30. Piñeros, J.O.M., Prado, A.F.B.A.: Powered aero-gravity-assist maneuvers considering lift and drag around the earth. Astrophys. Space Sci. 362(7), 120 (2017)

    Article  Google Scholar 

  31. Prado, A.F.B.A.: Close-approach trajectories in the elliptic restricted problem. J. Guid. Control. Dyn. 20, 797–802 (1997). https://doi.org/10.2514/2.4115

    Article  MATH  Google Scholar 

  32. Prado, A.F.B.A.: A comparison of the “patched-conics approach” and the restricted problem for swing-bys. Adv. Space Res. 40, 113–117 (2007)

    Article  Google Scholar 

  33. Prado, A.F.B.A.: Powered swing-by. J. Guid. Control. Dyn. 19(5), 1142–1147 (1996). https://doi.org/10.2514/3.21756

    Article  MATH  Google Scholar 

  34. Prado, A.F.B.A., Broucke, R.A.: Effects of atmospheric drag in swing-by trajectory. Acta Astronaut. 36(6), 285–290 (1995)

    Article  Google Scholar 

  35. Rao, A., Scherich, A., Cox, S., Mosher, T.: A concept for operationally responsive space mission planning using aeroassisted orbital transfer. In: 2008 Responsive Space Conference (2008)

    Google Scholar 

  36. Santos, D.P.S., Prado, A.F.B.A., Casalino, L., Colasurdo, G.: Optimal trajectories towards near-earth-objects using solar electric propulsion (sep) and gravity assisted maneuver. J. Aerosp Eng. Sci. Appl. 1(2), 51–64 (2008)

    Google Scholar 

  37. Silva, A.F., Prado, A.F.B.A., Winter, O.C.: Powered swing-by maneuvers around the moon. J. Phys. Conf. Ser. 465, 012001 (2013). https://doi.org/10.1088/1742-6596/465/1/012001

    Article  Google Scholar 

  38. Sims, J., Longuski, J., Patel, M.: Aerogravity-assist trajectories to the outer planets and the effect of drag. J. Spacecr. Rocket. 37(1), 49–55 (2000)

    Article  Google Scholar 

  39. Szebehely, S.: Theory of Orbits the Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciation for the support provided by grants # 406841/2016-0 and 301338/2016-7 from the National Council for Scientific and Technological Development (CNPq); grants # 2016/24561-0 and 2016/14665-2, from São Paulo Research Foundation (FAPESP) and the financial support from the National Council for the Improvement of Higher Education (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhonathan O. Murcia-Piñeros.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murcia-Piñeros, J.O., Prado, A.F.B.A. Application of Impulsive Aero-Gravity Assisted Maneuvers in Venus and Mars to Change the Orbital Inclination of a Spacecraft. J of Astronaut Sci 66, 322–340 (2019). https://doi.org/10.1007/s40295-019-00156-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00156-5

Keywords

Navigation