Skip to main content
Log in

Prospects for Estimating the Properties of a Loose Surface from the Phase Profiles of Polarization and Intensity of the Scattered Light

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

It has been shown that the model of a scattering medium composed of clusters located in the far zones of each other allows some properties of regolith-like surfaces to be quantitatively estimated from the phase dependences of intensity and polarization measured in the backscattering domain. From the polarization profiles, the sizes of particles, the structure and porosity of the medium, and a portion of the surface area covered with a disperse material can be determined. At the same time, the intensity profiles of the scattered light weakly depend on the sizes and structure of particles; they are mainly controlled by the concentration of scatterers in the medium and the shadow-hiding contribution at small phase angles. Since the latter effect is beyond the considered model, a good agreement between the model and the measured intensity cannot be achieved. Nevertheless, if a portion of the surface that participates in coherent backscattering has been found from the phase profile of polarization, the present model makes it possible to determine the relative contribution of the shadow-hiding effect to the brightness surge measured at zero phase angle. This, in turn, may allow the roughness of the scattering surface to be estimated. The model contains no free parameters, but there is currently no possibility to verify it comprehensively by the data obtained in laboratory measurements of the samples with thoroughly controlled characteristics, because such measurements are rare for a wide range of the properties of particles in a medium, their packing density, and phase angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buratti, B.J., Mosher, J.A., Abramson, L., Akhter, N., Clark, R.N., Brown, R.H., Baines, K.H., Nicholson, R.D., and De Wet, S., Opposition surges of the satellites of Saturn from the Cassini Visual Infrared Mapping Spectrometer (VIMS), Proc. 40th Lunar and Planetary Science Conf., Houston: Lunar Planet. Inst., 2009, no. 1738.

    Google Scholar 

  • Dlugach, J.M., Mishchenko, M.I., Liu, L., and Mackowski, D.W., Numerically exact computer simulations of light scattering by densely packed, random particulate media, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, pp. 2068–2078. https://doi.org/10.1016/j.jqsrt.2011.02.009

    Article  ADS  Google Scholar 

  • Mackowski, D.W., Electrostatics analysis of sphere clusters in the Rayleigh limit: application to soot particles, Appl. Opt., 1995, vol. 34, pp. 3535–3545.

    Article  ADS  Google Scholar 

  • Mackowski, D.W. and Mishchenko, M.I., A multiple sphere T-matrix Fortran code for use on parallel computer clusters, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, pp. 2182–2192. https://doi.org/10.1016/jjqsrt.2011.02.019

    Article  ADS  Google Scholar 

  • Mackowski, D.W. and Mishchenko, M.I., Direct simulation of extinction in a slab of spherical particles, J. Quant. Spectrosc. Radiat. Transfer, 2013, vol. 123, pp. 103–112. https://doi.org/10.1016/jjqsrt.2013.02.008

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Lravis, L.D., and Lacis, A.A., Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering, Cambridge: Cambridge Univ. Press, 2006. https://doi.org/www.giss.nasa.gov/staff/mmishchenko/publications.

    Google Scholar 

  • Mishchenko, M., Dlugach, J., Liu, L., Rosenbush, V., Kiselev, N., and Shkuratov, Y., Direct solutions of the Maxwell equations explain opposition phenomena observed for high-albedo Solar system objects, Astrophys. J. Lett., 2009, vol. 705, pp. L118–L122.

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Goldstein, D.H., Chowdhary, J., and Lompado, A., Radiative transfer theory verified by controlled laboratory experiments, Opt. Lett., 2013, vol. 38, no. 18, pp. 3512–3525. https://doi.org/10.1364/OL.38.003522

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Dlugach, J.M., Chowdhary, J., and Zakharova, N.T., Polarized bidirectional reflectance of optically thick sparse particulate layers: An efficient numerically exact radiative-transfer solution, J. Quant. Spectrosc. Radiat. Transfer, 2015, vol. 156, pp. 97–108. https://doi.org/10.1016/jjqsrt.2015.02.003

    Article  ADS  Google Scholar 

  • Muinonen, K., Videen, G., Zubko, E., and Shkuratov, Yu.G., Numerical techniques for backscattering by random media, in Optics of Cosmic Dust, Videen, G. and Kocifaj, M., Eds., Dordrecht.: Kluwer, 2006, pp. 261–282.

    Google Scholar 

  • Nelson, R.M., Boryta, M.D., Hapke, B.W., Manatt, K.S., Shkuratov, Yu., Psarev, V., Vandervoort, K., Kroner, D., Nebedum, A., Vides, C.L., and Quinones, J., Laboratory simulations of planetary surfaces: Understanding regolith physical properties from remote photopolarimetric observations, Icarus, 2018, vol. 302, pp. 483–498. https://doi.org/10.1016/j.icarus.2017.11.021

    Article  ADS  Google Scholar 

  • Petrova, E.V., Tishkovets, V.P., and Jockers, K., Modeling of opposition effects with ensembles of clusters: Interplay of various scattering mechanisms, Icarus, 2007, vol. 188, pp. 233–245. https://doi.org/10.1016/j.icarus.2006.11.011

    Article  ADS  Google Scholar 

  • Shkuratov, Yu.G., Muinonen, K., Bowell, E., Lumme, K., Peltoniemi, J.I., Kreslavsky, M.A., Stankevich, D.G., Tishkovets, V.P., Opanasenko, N.V., and Melkumova, L.Y., A critical review of theoretical models for the negative polarization of light scattered by atmosphereless Solar system bodies, Earth, Moon, Planets, 1994, vol. 65, no. 3, pp. 201–246.

    Article  ADS  Google Scholar 

  • Shkuratov, Yu., Ovcharenko, A., Zubko, E., Miloslavskaya, O., Nelson, R., Smythe, W., Muinonen, K., Piironen, J., Rosenbush, V., and Helfenstein, P., The opposition effect and negative polarization of structural analogs for planetary regoliths, Icarus, 2002, vol. 159, pp. 396–416.

    Article  ADS  Google Scholar 

  • Sobolev, V.V., Rasseyante sveta v atmosferakh planet (Light Scattering in the Atmospheres of Planets), Moscow: Nauka, 1972.

    Google Scholar 

  • Tishkovets, V.P., Light scattering by closely packed clusters: Shielding of particles by each other in the near field, J. Quant. Spectrosc. Radiat. Transfer, 2008, vol. 109, pp. 2665–2672. https://doi.org/10.1016/j.jqsrt.2008.05.008

    Article  ADS  Google Scholar 

  • Tishkovets, V.P. and Mishchenko, M.I., Approximate calculation of coherent backscattering for semi-infinite discrete random media., J. Quant. Spectrosc. Radiat. Transfer, 2009, vol. 110, pp. 139–145. https://doi.org/10.1016/jjqsrt.2008.09.005

    Article  ADS  Google Scholar 

  • Tishkovets, V.P. and Petrova, E.V., Coherent backscattering by discrete random media composed of clusters of spherical particles, J. Quant. Spectrosc. Radiat. Transfer, 2013a, vol. 127, pp. 192–206. https://doi.org/10.1016/jjqsrt.2013.05.017

    Article  ADS  Google Scholar 

  • Tishkovets, V.P. and Petrova, E.V., Light scattering by densely packed systems of particles: near-field effects, in Light Scattering Reviews, Vol. 7: Radiative Transfer and Optical Properties of Atmosphere and Underlying Surface, Kokhanovsky, A., Ed., Berlin: Springer-Verlag, 2013b, pp. 3–36.

    Google Scholar 

  • Tishkovets, V.P. and Petrova, E.V., On applicability of the far-field approximation to the analysis of light scattering by particulate media, J. Quant. Spectrosc. Radiat. Transfer, 2016, vol. 182, pp. 24–34. https://doi.org/10.1016/jjqsrt.2016.05.013

    Article  ADS  Google Scholar 

  • Tishkovets, V.P. and Petrova, E.V., Reflectance model for densely packed media: estimates of the surface properties of the high-albedo satellites of Saturn, Sol. Syst. Res., 2017, vol. 51, pp. 277–293. https://doi.org/10.1134/S0038094617040062

    Article  ADS  Google Scholar 

  • Tishkovets, V.P., Petrova, E.V., and Jockers, K., Optical properties of aggregate particles comparable in size to the wavelength, J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 86, pp. 241–265. https://doi.org/10.1016/jjqsrt.2003.08.003

    Article  ADS  Google Scholar 

  • Tishkovets, V.P., Petrova, E.V., and Mishchenko, M.I., Scattering of electromagnetic waves by ensembles of particles and discrete random media, J. Quant. Spectrosc. Radiat. Transfer, 2011, vol. 112, pp. 2095–2127. https://doi.org/10.1016/j.jqsrt.2011.04.010

    Article  ADS  Google Scholar 

  • Tsang, L. and Kong, J.A., Scattering of Electromagnetic Waves: Advanced Topics, New York: Wiley, 2001.

    Book  Google Scholar 

  • Varadan, V.K., Bringi, V.N., and Varadan, V.V., Coherent electromagnetic wave propagation through randomly distributed dielectric scatters, Phys. Rev. D, 1979, vol. 19, pp. 2480–2489.

    Article  ADS  Google Scholar 

  • Varadan, V.K., Bringi, V.N., Varadan, V.V., and Ishimaru, A., Multiple scattering theory for waves in discrete random media and comparison with experiments, Radio Sci., 1983, vol. 18, pp. 321–327.

    Article  ADS  Google Scholar 

  • Videen, G. and Muinonen, K., Light-scattering evolution from particles to regolith, J. Quant. Spectrosc. Radiat. Transfer, 2015, vol. 150, pp. 87–94. https://doi.org/10.1016/jjqsrt.2014.05.019

    Article  ADS  Google Scholar 

  • Warren, S.G. and Brandt, R.E., Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res.: Atmos., 2008, vol. 113, no. D14220. https://doi.org/10.1029/2007JD009744

    Google Scholar 

  • Yanovitskii, E.G., Rasseyante sveta v neodnorodnykh atmosferakh (Light Scattering in Heterogenic Media), Kiev: Naukova Dumka, 1995.

    Google Scholar 

  • Zaitsev, S.V., Negative polarization of scattered radiation of selected atmosphereless objects of the Solar system, Extended Abstract of Cand. Sci. (Phys.-Math.) Dissertation, Kyiv: Main Astron. Obs., Natl. Acad. Sci. Ukr., 2016.

    Google Scholar 

  • Zaitsev, S.V., Kiselev, N.N., Rosenbush, V.K., and Kolesnikov, S.V., Polarimetry of Saturn's satellite Rhea, Kinematics Phys. Celest. Bodies, 2015, vol. 31, no. 6, pp. 281–285.

    Article  ADS  Google Scholar 

  • Zubko, E., Shkuratov, Yu., Mishchenko, M., and Videen, G., Light scattering in a finite multi-particle system, J. Quant. Spectrosc. Radiat. Transfer, 2008, vol. 109, pp.2195–2206. https://doi.org/10.1016/jjqsrt.2008.03.007

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Petrova or V. P. Tishkovets.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Vestnik, 2019, Vol. 53, No. 3, pp. 185–194.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.V., Tishkovets, V.P., Nelson, R.M. et al. Prospects for Estimating the Properties of a Loose Surface from the Phase Profiles of Polarization and Intensity of the Scattered Light. Sol Syst Res 53, 172–180 (2019). https://doi.org/10.1134/S0038094619020059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094619020059

Keywords

Navigation