Skip to main content
Log in

Gravitational deformation of small bodies of the solar system: History of the problem and its analytical solution

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

We consider in retrospect the problem of gravitational deformation of small bodies of the Solar System and the transition observed between small and planetary bodies, which is closely related to the history of concepts of the shape of the solid Earth. It has been shown that these concepts in geology and comparative planetology developed in two main competing directions—thermal and gravitational. We consider an analytical solution for gravitational deformation of a nonequilibrium shape of small solid bodies of the Solar System and show that the linear theory of elasticity can be applied to estimate of the value and distribution of stresses in real small bodies of various composition that have the ultimate strength and yield strength under triaxial gravitational compression. From the performed analysis, it has been found that the value and distribution of stresses depend on the chemical and mineralogical composition of the small bodies and are determined by such main parameters as the mass of a body, its density, size, shape, yield strength, and the Poisson ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chandrasekhar, S., Ellipsoidal Figures of Equilibrium, New Haven, CT.: Yale Univ. Press, 1969, p. 560.

    MATH  Google Scholar 

  • Clairaut, A., Theorie de la figure de la Terre. A Paris: J.B. Coignard, 1743.

  • Croft, S.K., Proteus: geology, shape, and catastrophic destruction, Icarus, 1992, vol. 99, pp. 402–419.

    Article  ADS  Google Scholar 

  • Darwin, G.H., The Tides and Kindred Phenomena in the Solar System, Boston, MA: Houghton, Mifflin and Co., 1898.

    MATH  Google Scholar 

  • de Laplace, P.S., Traite de mecanique celeste, Paris, 1825, vol. 2, 547 p.

  • Donath, F.A. and Fruth, L.S., Dependence of strain-rate effects on deformation mechanism and rock type, J. Geol., 1971, vol. 79, pp. 347–371.

    Article  ADS  Google Scholar 

  • Donath, F.A., Deformations determination: experimental methods, in The Encyclopedia of Structural Geology and Plate Tectonics, Seyfert, C.S., Ed., N.Y.: Van Nostrand Reinhold Co., 1987, 876 p.

    Google Scholar 

  • Farinella, P., Paolicchi, P., Ferrini, F., Milani, A., Nobili, A.M., and Zappala, V., The shape of small Solar system bodies: gravitational equilibrium vs. solid-state interactions, in The Comparative Study of the Planets, Coradini, A. and Fulchignoni, M., Eds., Dordrecht: D. Reidel Publ., 1982, pp. 71–77.

    Chapter  Google Scholar 

  • Farinella, P., Milani, A., Nobili, A.M., Paolicchi, P., and Zappala, V., The shape of the small satellites of Saturn-gravitational equilibrium vs solid-state strength, Moon Planets, 1983, vol. 28, pp. 251–258.

    Article  ADS  Google Scholar 

  • Farinella, P., Milani, A., Nobili, A.M., Paolicchi, P., and Zappala, V., The shape and strength of small icy Satellites, in The Ices in the Solar System, Klinger, J., et al., Eds., Dordrecht: D. Reidel Publ., 1985, pp. 699–710.

    Chapter  Google Scholar 

  • Garber, R.I., Gindin, I.A., and Chirkina, L.A., Twinning and annealing of non-equilibrium iron-nickel alloy (Sikhote-Alin meteoritic iron), Meteoritika, 1963, no. 23, pp. 45–55.

    Google Scholar 

  • Heim, A., Untersuchungen über den Mechanismus der Gebirgsbildung. Basel: B. Schwabe, 1878. 592 p.

    Google Scholar 

  • Handin, J., Rocks rheology, in The Encyclopedia of Structural Geology and Plate Tectonics, Seyfert, C.S., Ed., N.Y.: Van Nostrand Reinhold Co., 1987, 876 p.

    Google Scholar 

  • Herschel, J.F.W., Outlines of Astronomy, Cambridge: Metcalf and Co., 1849, 661 p.

    Google Scholar 

  • Hutton, J., Theory of the Earth with proofs and illustrations. Edinbourgh: William Creech, 1975. V. I, 276 p. V. II, 547 p.

    Google Scholar 

  • Jacobi, C.G.J., Uber die figur des gleichgewichts, Poggendorff Ann. Phys. Chem., 1834, vol. 33, pp. 229–238.

    Article  Google Scholar 

  • Johnson, T.V. and McGetchin, T.R., Topography on satellite surfaces and the shape of asteroids, Icarus, 1973, vol. 18, pp. 612–620.

    Article  ADS  Google Scholar 

  • Kant, I., Allgemeine Naturgeschichte und Theorie des Himmels, oder Versuch von der Verfassung und dem mechanischen Ursprunge des ganzen Weltgebäudes, nach Newtonischen Grundsätzen abgehandelt. Königsberg and Leipzig: Johann Friederich Petersen, 1755. 200 p.

  • Khain, V.E., Some problems of modern geotectonics, Izv. Akad. Nauk SSSR, Ser. Geol., 1957, no. 12, pp. 47–60.

    Google Scholar 

  • Kondaurov, V.I. and Nikitin, L.V., (Theoretical Foundations of Rheology for Geomaterials), Moscow: Nauka, 1990, 205 p.

    Google Scholar 

  • Krasovskii, F.N., (Selected Works), Moscow: USSR Acad. Sci., 1953, vol. 1, 370 p.

    Google Scholar 

  • Krinov, E.L., (Small Planets (Asteroids)), Moscow: USSR Acad. Sci., 1951, 235 p.

    Google Scholar 

  • Lewis, J.S., Satellites of the outer planets: their physical and chemical nature, Icarus, 1971, vol. 15, p. 174.

    Article  ADS  Google Scholar 

  • Lichkov, B.L., (Earth’s Natural Water and Lithosphere), Moscow-Leningrad: USSR Acad. Sci., 1960, 164 p.

    Google Scholar 

  • Lichkov, B.L., (Foundations of the Modern Earth’s Theory), Leningrad: Izd. Leningrad. Univ., 1965, 120 p.

    Google Scholar 

  • Lukashevich, I.D., Neorganicheskaya zhizn’ Zemli (Inorganic Life of the Earth), 1908, parts 1, 2.

    Google Scholar 

  • Lukashevich, I.D., Neorganicheskaya zhizn’ Zemli (Inorganic Life of the Earth), 1911, part 3.

    Google Scholar 

  • Lur’e, A.I., Teoriya uprugosti (Elasticity Theory), Moscow: Nauka, 1970, 940 p.

    Google Scholar 

  • Lyell, C., Principles of Geology: Being an Attempt to Explain the former Changes of the Earth’s Surface, by Reference to Causes Now in Operation, London: John Murray, 1830.

    Google Scholar 

  • Lyell, C., Elements of Geology, Oxford Univ. Press, 1838.

    Google Scholar 

  • Lyapunov, A.M., On celestial bodies shape Proc. of the Academy of Sciences in Physics and Mathematics Dep., 1930, 1, pp. 25–41.

    Google Scholar 

  • Lyapunov, A.M., Researches in the theory of celestial bodies shape Notes of the Imperial Academy Nauk on Sci. Dep., 8 ser., 1903, vol. 14, no. 7, pp. 1–37.

    Google Scholar 

  • Maclaurin, C., History of the Mathematical Theories of Attraction and the Figure of the Earth, New York: Dover, 1962, vol. 1, 471 p.

    Google Scholar 

  • Magnitskii, V.A., Possible deformations in deep layers of Earth’s core and subcoral layer, Byull. MOOIP, 1948, vol. 23, no. 2, pp. 3–22.

    Google Scholar 

  • Magnitskii, V.A., (Foundations of the Earth’s Physics), Moscow: Geodezizdat, 1953, 290 p.

    Google Scholar 

  • McClintock, F.A. and Argon, A.S., Mechanical Behavior of Materials, Reading, MA: Addison-Wesley, 1966, 770 p.

    Google Scholar 

  • Muskhelishvili, N.I., (Some Main Problems of Mathematical Elasticity Theory), Moscow: Nauka, 1966, 709 p.

    Google Scholar 

  • Newton, I., Philosophiae Naturalis Principia Mathematica, Pemberton, H., Ed., London, 1687, 530 p.

  • Nicolas, A., Principles of Rock Deformation, Dordrecht: D. Reidel Publ., 1987, p. 168.

    Book  Google Scholar 

  • Novozhilov, V.V., Teoriya uprugosti (Elasticity Theory), Leningrad: Sudpromgiz, 1958, p. 371.

    MATH  Google Scholar 

  • Penk, A., Die Gipfelflur der Alpen, Sitzungber. d. preus. Akad. Wiss., 1919, pp. 263.

    Google Scholar 

  • Playfair, J., Illustrations of the Huttonian theory of the Earth (1802), in Collected Works of John Plaifair, 1822, vol. 1, p. 415.

    Google Scholar 

  • Poincaré, H., Sur l’equilibre d’une masse fluide animée d’un movement de rotation, Acta Math., 1885, vol. 7, pp. 259–380.

    Article  MathSciNet  Google Scholar 

  • Poirier, J.P., Mineral Physics and Crystallography: a Handbook of Physical Constants, Ahrens, T.J., Ed., Washington: Amer. Geophys. Union, 1995, pp. 237–247.

  • Protod’yakonov, M.M., Teder, R.I., Il’nitskaya, E.I., Yakobashvili, O.P., Safronova, I.B., Tsykin, A.I., Kvashnina, O.I., Pavlova, N.N., Levushkin, L.N., Zefirov, Yu.V., Savel’ev, A.A., and Dolgova, M.O., (Physical Properties of Rocks: Indexes Distribution and Correlation. Handbook), Moscow: Nedra, 1981, p. 192.

    Google Scholar 

  • Roche, M.E., La figure d’une masse fluide, Acad. Sci. Lettr. Montpellier, 1850, vol. 1, pp. 243–262, 333–348.

    Google Scholar 

  • Rzhevskii, V.V. and Novik, G.Ya., (Foundation of Rocks Physics), Moscow: Nedra, 1973, p. 286.

    Google Scholar 

  • Simonenko, A.N., (Meteorites Are Asteroids Fragments), Moscow: Nauka, 1979, p. 224.

    Google Scholar 

  • Slyuta, E.N. and Voropaev, S.A., Small and planetary bodies of Solar System. Critical mass of icy bodies, Doklady Physics, 1992, vol. 37, no. 8, pp. 383–385 (Engl. transl.)

    Google Scholar 

  • Slyuta, E.N. and Voropaev, S.A., Gravitational deformation in shaping asteroids and small satellites, Icarus, 1997, vol. 129, pp. 401–414.

    Article  ADS  Google Scholar 

  • Slyuta, E.N., Physico-mechanical properties and gravitational deformation of metallic asteroids, Solar Syst. Res., 2013b, vol. 47, no. 2, pp. 109–126.

    Article  ADS  Google Scholar 

  • Slyuta, E.N., There’s no creep in small Solar system bodies, Proc. 44th Lunar and Planet. Sci. Conf., Houston, 2013a, abstr. 1117.

    Google Scholar 

  • Slyuta, E.N. and Voropaev, S.A., Gravitational deformation of icy small Solar system bodies, Proc. 45th Lunar and Planet. Sci. Conf., Houston, 2014a, abstr. 1055.

    Google Scholar 

  • Slyuta, E.N. and Voropaev, S.A., Gravitational deformation and thermal history of Vesta, Workshop on Vesta in the Light of Dawn, Houston, 2014b, abstr. 2012.

    Google Scholar 

  • Slyuta, E.N., Shape of small Solar system bodies, Solar Syst. Res., 2014c, vol. 48, no. 3, pp. 217–238.

    Article  ADS  Google Scholar 

  • Sommerfeld, A., Mechanik der deformierbaren Medien, Wiesbaden: Dieterich’sche Verlagsbuch, 1949.

    MATH  Google Scholar 

  • Soter, S. and Harris, A., The equilibrium figures of Phobos and other small bodies, Icarus, 1977, vol. 30, pp. 192–199.

    Article  ADS  Google Scholar 

  • Sridhar, S. and Tremaine, S., Tidal disruption of viscous bodies, Icarus, 1992, vol. 95, pp. 86–99.

    Article  ADS  Google Scholar 

  • Suess, Ed., Das Antlitz der Erde, 1883–1909, vols. 1–3.

    Google Scholar 

  • Thomas, P.C., The shapes of small satellites, Icarus, 1989, vol. 77, pp. 248–274.

    Article  ADS  Google Scholar 

  • Thomson, W., On rigidity of the Earth, Philos. Trans., 1864, vol. 158, pp. 573–582.

    Google Scholar 

  • Tikhonov, A.N. and Samarskii, A.A., (Equations for Mathematical Physics), Moscow: Nauka, 1977, p. 735.

    Google Scholar 

  • Usov, M.A., Geotectonic theory of self-development of the Earth material. Proc. of USSR Academy of Sciences, Ser. Geology., 1940, 1, pp. 3–11.

    Google Scholar 

  • Veeder, G.J., Tedesco, E.F., and Matson, D.L., Asteroid results from the IRAS survey, in Asteroids II, Binzel, R.P., Gehrels, T., and Matthews, M.S., Eds., Tucson: Univ. Arizona Press, 1989, pp. 282–289.

    Google Scholar 

  • Wegener, A., The Origin of Continents and Oceans, New York: Dover, 1966.

    Google Scholar 

  • Zharkov, V.N., (Internal Structure of the Earth), Moscow: Nauka, 1983, p. 416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Slyuta.

Additional information

Original Russian Text © E.N. Slyuta, S.A. Voropaev, 2015, published in Astronomicheskii Vestnik, 2015, Vol. 49, No. 2, pp. 131–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slyuta, E.N., Voropaev, S.A. Gravitational deformation of small bodies of the solar system: History of the problem and its analytical solution. Sol Syst Res 49, 123–138 (2015). https://doi.org/10.1134/S0038094615010086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094615010086

Keywords

Navigation