Skip to main content
Log in

Coronal mass ejections: Some possibilities for prediction

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The onset stage of coronal mass ejections (CMEs) is difficult to observe and is poorly studied. In spite of their practical importance, methods for CME predictions with sufficient lead times are only in the nascent stages of development. The most probable CME mechanism is a catastrophic loss of equilibrium of a large-scale current system in the corona (a flux rope). A twisted magnetic rope is maintained by the tension of field lines of photospheric sources until parameters of the system reach critical values and the equilibrium is lost. Unfortunately, there is low-density plasma (coronal cavity) in most of the rope volume; thus, it is difficult to observe a rope. However, the lower parts of the helical field lines of a rope are fine traps for the dense cold plasma of prominences. Thus, prominences are the best tracers of flux ropes in the corona. The maximal height up to which the rope is in stable equilibrium can be found by analyzing the distribution of the magnetic field generated by photospheric sources in the corona. Comparing this critical height with the actually observed prominence height, one can estimate the probability of the loss of equilibrium by a magnetic rope with a following eruption of prominences and coronal mass ejections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, S., Hori, K., Nakagima, H., and Hara, H., Relationship of CMEs and N-S AR-Interconnecting Loops Observed by SXT and Nobeyama Radioheliograph, Proc. of the Int. Conf. Solar Eruptive Events, Washington, DC: Center for Solar Physics and Space Weather, The Catholic University of America, 2000, p. 12.

    Google Scholar 

  • Amari, T., Luciani, J.F., Mikic, Z., and Linker, J., A Twisted Flux Rope Model for Coronal Mass Ejections and Two-Ribbon Flares, Astrophys. J., 2000, vol. 529, pp. L49–L52.

    Article  ADS  Google Scholar 

  • Antiochos, S.K., The Magnetic Topology of Solar Eruptions, Astrophys. J., 1998, vol. 502, pp. L181–L184.

    Article  ADS  Google Scholar 

  • d’Azambuja, L. and d’Azambuja, M., Edude d’Ensemble des Protuberances Solaires et Leur Evolution Effectuee a l’Aide des Spectroheliogramms Obtenus a l’Observatoire de Meudon et des Cartes Synoptiques de la Chromosphere Publiees par l’Etablissment, Ann. Obs., Paris: Meudon, 1948, vol. 6, no. 7.

    Google Scholar 

  • Canfield, R.C., Hudson, H.S., and McKenzie, D.E., Sigmoidal Morphology and Eruptive Solar Activity, Geophys. Rev. Lett., 1999, vol. 26, no. 6, pp. 627–630.

    Article  ADS  Google Scholar 

  • Crifo, F., Picat, J.P., and Cailloux, M., Coronal Transients. Loop Or Bubble, Sol. Phys., 1983, vol. 83, pp. 143–152.

    Article  ADS  Google Scholar 

  • Cuperman, S., Ofman, L., and Semel, M., Extrapolation of Photospheric Potential Magnetic Fields Using Oblique Boundary Values. A Simplified Approach, Astron. Astrophys., 1990, vol. 227, pp. 583–590.

    ADS  Google Scholar 

  • Den, O.G., Calculating the Potential Magnetic Field of a Local Region on the Sun Using the Measured Oblique Component, Pis’ma Astron. Zh., 2002, vol. 28, no. 5, pp. 393–400 [Astron. Lett. (Engl. Transl.), vol. 28, no. 5, p. 345].

    ADS  Google Scholar 

  • DeVore, C.R. and Antiochos, S.K., Dynamical Formation and Stability of Helical Prominence Magnetic Fields, Astrophys. J., 2000, vol. 539, pp. 954–963.

    Article  ADS  Google Scholar 

  • Engvold, O., Solar Prominences as a Pre-Eruptive State of CMEs, Proc. of the Int. Conf. Solar Eruptive Events, Washington, DC: Center for Solar Physics and Space Weather, The Catholic Univ. of America, 2000, p. 20.

    Google Scholar 

  • Filippov, B.P., Coronal Mass Ejections Caused by Filament Eruptions, Astron. Astrophys., 1996, vol. 313, pp. 277–284.

    ADS  Google Scholar 

  • Filippov, B.P. and Den, O.G., Prominence Height and Vertical Gradient in the Magnetic Field, Pis’ma Astron. Zh., 2000, vol. 26, no. 5, pp. 322–327 [Astron. Lett. (Engl. Transl.), 2000, vol. 26, no. 5, pp. 384–390].

    Google Scholar 

  • Filippov, B.P. and Den, O.G., A Critical Height of Quiescent Prominences Before Eruption, J. Geophys. Res., 2001, vol. 106, pp. 25177–25184.

    Article  ADS  Google Scholar 

  • Forbes, T.G. and Isenberg, P.A., A Catastrophe Mechanism for Coronal Mass Ejections, Astrophys. J., 1991, vol. 373, pp. 294–307.

    Article  ADS  Google Scholar 

  • Gosling, J.T., The Solar Flare Myth, J. Geophys. Res., 1993, vol. 98, pp. 18937–18949.

    ADS  Google Scholar 

  • Hewish, A. and Bravo, S., The Sources of Large-Scale Heliospheric Disturbances, Sol. Phys., 1986, vol. 106, pp. 185–200.

    Article  ADS  Google Scholar 

  • Hundhausen, A.J., Sizes and Locations of Coronal Mass Ejections: SMM Observations from 1980 and 1984–1989, J. Geophys. Res., 1993, vol. 98, pp. 13177–13200.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Solar Flares and Coronal Mass Ejections, Annu. Rev. Astron. Astrophys., 1992, vol. 30, pp. 113–141.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Energetic Particle Acceleration by Coronal Mass Ejections, Adv. Space Res., 2003, vol. 32, pp. 2587–2596.

    ADS  Google Scholar 

  • Khan, J.I. and Hudson, H.S., Homologous Sudden Disappearances of Transequatorial Interconnecting Loops in the Solar Corona, Geophys. Rev. Lett., 2000, vol. 27, pp. 1083–1086.

    Article  ADS  Google Scholar 

  • Kuperus, M. and Raadu, M.A., The Support of Prominences Formed in Neutral Sheets, Astron. Astrophys., 1974, vol. 31, pp. 189–193.

    ADS  Google Scholar 

  • Low, B.C., Solar Activity and the Corona, Sol. Phys., 1996, vol. 167, pp. 217–265.

    Article  ADS  Google Scholar 

  • Martin, S.F., Conditions for the Formation and Maintenance of Filaments, Sol. Phys., 1998, vol. 182, pp. 107–137.

    Article  ADS  Google Scholar 

  • Molodensky, M.M. and Filippov, B.P., Rapid Motion of Filaments in Solar Active Regions—Part Two, Astron. Zh., 1987, vol. 64, no. 5, pp. 1079–1087 [Sov. Astron. (Engl. Transl.), vol. 31, no. 5, p. 564].

    ADS  Google Scholar 

  • Rompolt, B., Small Scale Structure and Dynamics of Prominences, Hvar Obs. Bull., 1990, vol. 14, pp. 37–102.

    ADS  Google Scholar 

  • Rudenko, G.V., Extrapolation of the Solar Magnetic Field within the Potential-Field Approximation from Full-Disk Magnetograms, Sol. Phys., 2001, vol. 198, pp. 5–30.

    Article  ADS  Google Scholar 

  • Rust, D.M., A New Paradigm for Solar Filament Eruptions, J. Geophys. Res., 2001, vol. 106, pp. 25075–25088.

    Article  ADS  Google Scholar 

  • St. Cyr, O.C. and Webb, D.F., Activity Associated with Coronal Mass Ejections at Solar Minimum: SMM Observations from 1984–1986, Sol. Phys., 1991, vol. 136, pp. 379–394.

    Article  ADS  Google Scholar 

  • St. Cyr, O.C., Burkepile, J.T., Hundhausen, A.J., and Lecinski, A.R., A Comparison of Ground-Based and Spacecraft Observations of Coronal Mass Ejections from 1980–1989, J. Geophys. Res., 1999, vol. 104, pp. 12493–12506.

    Article  ADS  Google Scholar 

  • Sterling, A.C., Hudson, H.S., Thompson, B.J., and Zarro, D.M., Yohkoh SXT and SOHO EIT Observations of Sigmoid-To-Arcade Evolution of Structures Associated with Halo Coronal Mass Ejections, Astrophys. J., 2000, vol. 532, pp. 628–647.

    Article  ADS  Google Scholar 

  • Van Tend, W. and Kuperus, M., The Development of Coronal Electric Current Systems in Active Regions and Their Relation To Filaments and Flares, Sol. Phys., 1978, vol. 59, pp. 115–127.

    Article  ADS  Google Scholar 

  • Vršnak, B., Ruždjak, V., and Rompolt, B., Stability of Prominences Exposing Helical-Like Patterns, Sol. Phys., 1991, vol. 136, pp. 151–167.

    Article  ADS  Google Scholar 

  • Vršnak, B., Roša, D., Božić, H., et al., Height of Tracers and the Correction of the Measured Solar Synodic Rotation Rate: Demonstration of the Model, Sol. Phys., 1999, vol. 185, pp. 207–225.

    Article  ADS  Google Scholar 

  • Webb, D.F. and Hundhausen, A.J., Activity Associated with the Solar Origin of Coronal Mass Ejections, Sol. Phys., 1987, vol. 108, pp. 383–401.

    Article  ADS  Google Scholar 

  • Webb, D.F., Forbes, T.G., Aurass, H., et al., Material Ejection, Sol. Phys., 1994, vol. 153, pp. 73–89.

    Article  ADS  Google Scholar 

  • Zagnetko, A.M., Filippov, B.P., and Den, O.G., Geometry of Solar Prominences and Magnetic Fields in the Corona, Astron. Zh., 2005, vol. 82, no. 5, pp. 474–482 [Astron. Rep. (Engl. Transl.), vol. 49, no. 5, p. 425].

    Google Scholar 

  • Zirin, H., The Ecology of Prominences, in Proc. IAU Colloq. no. 44: Physics of Solar Prominences, Jensen, E., Maltby, P., and Orrall, F.Q., Eds., Paris: Int. Astron. Union, 1979, pp. 193–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © B.P. Filippov, A.M. Zagnetko, A. Ajabshirizadeh, O.G. Den, 2006, published in Astronomicheskii Vestnik, 2006, Vol. 40, No. 4, pp. 350–356.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, B.P., Zagnetko, A.M., Ajabshirizadeh, A. et al. Coronal mass ejections: Some possibilities for prediction. Sol Syst Res 40, 319–325 (2006). https://doi.org/10.1134/S0038094606040083

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094606040083

PACS numbers

Navigation