Skip to main content
Log in

On Normal \( \mu \)-Hankel Operators

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Hankel operators have numerous realizations and form one of the most important classes of operators in the spaces of analytic functions. These operators can be defined as those having Hankel matrices (i.e. matrices whose entries depend only on the sum of the indices) with respect to some orthonormal basis for a separable Hilbert space. This paper continues the authors’ research of 2021 which introduced a new class of operators in Hilbert spaces; i.e., \( \mu \)-Hankel operators, with \( \mu \) a complex parameter. These operators act in a separable Hilbert space and have matrices in some orthonormal basis of the space whose diagonals orthogonal to the main diagonal present geometric progressions with common ratio \( \mu \). Thus, the classical Hankel operators correspond to the case \( \mu=1 \). The main result of the article is the normality criterion for \( \mu \)-Hankel operators. By analogy with Hankel operators, the class of operators under consideration has concrete realizations in the form of integral operators which enables us to apply the abstract results, and thereby contribute to the theory of integral operators. We consider an example of these realizations in the Hardy space on the unit disk. Also, we give some criteria for the self-adjointness and normality of these operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and below, the angle brackets stand for the inner product.

  2. The only exception is the remark on Lemma 1 which deals with Hankel operators from \( H^{2}(𝕋) \) to \( H^{2}_{-}(𝕋):=L^{2}(𝕋)\ominus H^{2}(𝕋) \).

References

  1. Nikolskii N.K., Operators, Functions, and Systems: An Easy Reading. Vol. 1: Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence (2002) (Math. Surveys Monogr.; vol. 92).

    Google Scholar 

  2. Nikolskii N.K., Operators, Functions, and Systems: An Easy Reading. Vol. 2: Model Operators and Systems, Amer. Math. Soc., Providence (2002) (Math. Surveys Monogr.; vol. 93).

    Google Scholar 

  3. Peller V.V., Hankel Operators and Their Applications, Springer, Berlin (2003) (Springer Monogr. Math.).

    Book  MATH  Google Scholar 

  4. Ho M.C., “On the rotational invariance for the essential spectrum of \( \lambda \)-Toeplitz operators,” J. Math. Anal. Appl., vol. 413, no. 2, 557–565 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. Mirotin A.R., “On the essential spectrum of \( \lambda \)-Toeplitz operators over compact abelian groups,” J. Math. Anal. Appl., vol. 424, no. 2, 1286–1295 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. Mirotin A.R. and Kuzmenkova E.Yu., “\( \mu \)-Hankel operators on Hilbert spaces,” Opuscula Math., vol. 41, no. 6, 881–899 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  7. Martinez-Avendaño R.A. and Rosenthal P., An Introduction to Operators on the Hardy–Hilbert Space, Springer, New York (2007).

    MATH  Google Scholar 

  8. Akhiezer N.I. and Glazman I.M., Theory of Linear Operators in Hilbert Space, Dover, New York (1993).

    MATH  Google Scholar 

  9. Mirotin A.R. and Kovalyova I.S., “The Markov–Stieltjes Transform on Hardy and Lebesgue Spaces,” Integral Transforms and Special Functions, vol. 27, no. 12, 995–1007 (2016) (Corrigendum to our paper “The Markov–Stieltjes transform on Hardy and Lebesgue spaces,” Integral Transforms and Special Functions, 2017, vol. 28, no. 5, pp. 421–422).

    Article  MathSciNet  MATH  Google Scholar 

  10. Mirotin A.R. and Kovalyova I.S., “Generalized Markov–Stieltjes operator on Hardy and Lebesgue spaces,” Tr. Inst. Mat., vol. 25, no. 1, 39–50 (2017).

    MathSciNet  MATH  Google Scholar 

  11. Weidmann J., Linear Operators in Hilbert Spaces, Springer, New York (1980).

    Book  MATH  Google Scholar 

  12. Zhu K., Operator Theory in Function Spaces. 2nd. ed., Amer. Math. Soc., Providence (2007) (Math. Surveys Monogr.; vol. 138).

    Book  MATH  Google Scholar 

  13. Prudnikov A.P., Brychkov Yu.A., and Marichev O.I., Integrals and Series: Elementary Functions, Gordon and Breach, New York (1986).

    MATH  Google Scholar 

Download references

Funding

The work is supported by the State Program for Scientific Research of the Republic of Belarus “Convergence-2025” (State Registration no. 20211776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kuzmenkova.

Additional information

Translated from Vladikavkazskii Matematicheskii Zhurnal, 2022, Vol. 24, No. 1, pp. 36–43. https://doi.org/10.46698/t8778-6480-0136-d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmenkova, E.Y., Mirotin, A.R. On Normal \( \mu \)-Hankel Operators. Sib Math J 64, 731–736 (2023). https://doi.org/10.1134/S0037446623030217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623030217

Keywords

UDC

Navigation