Skip to main content
Log in

The Multi-Valued Quasimöbius Mappings on the Riemann Sphere

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Suppose that a multi-valued mapping \( F:D\to 2^{\overline{𝔺}} \) of a domain \( D \) in the sphere \( \overline{𝔺} \) with disjoint images of distinct points boundedly distorts the Ptolemaic characteristic of generalized tetrads (quadruples of disjoint compact sets). Suppose that the image \( F(x) \) of each \( x\in D \) has at most \( N \) components, each of which is a continuum of bounded turning. Then \( F \), up to the values at some isolated branch points, is the inverse of a mapping with bounded distortion in the sense of Reshetnyak. In particular, if \( D=\overline{𝔺} \) then the left inverse to \( F \) is the composition of a quasiconformal automorphism of \( \overline{𝔺} \) and a rational function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reshetnyak Yu.G., “Bounds on moduli of continuity for certain mappings,” Sib. Math. J., vol. 7, no. 5, 879–886 (1966).

    Article  MATH  Google Scholar 

  2. Reshetnyak Yu.G., “Liouville’s theorem on conformal mappings for minimal regularity assumptions,” Sib. Math. J., vol. 8, no. 4, 631–634 (1967).

    Article  MATH  Google Scholar 

  3. Reshetnyak Yu.G., “Space mappings with bounded distortion,” Sib. Math. J., vol. 8, no. 3, 466–487 (1967).

    Article  Google Scholar 

  4. Reshetnyak Yu.G., “On the index boundedness condition for mappings with bounded distortion,” Sib. Math. J., vol. 9, no. 2, 281–285 (1968).

    Article  Google Scholar 

  5. Reshetnyak Yu.G., “Mappings with bounded distortion as extremals of Dirichlet type integrals,” Sib. Math. J., vol. 9, no. 3, 487–498 (1968).

    Article  MATH  Google Scholar 

  6. Reshetnyak Yu.G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989).

    Book  Google Scholar 

  7. Reshetnyak Yu.G., Stability Theorems in Geometry and Analysis, Kluwer, Dordrecht (1994) (Mathematics and Its Applications; vol. 304).

    Book  Google Scholar 

  8. Vodopyanov S.K., “Moduli inequalities for \( W^{1}_{n-1,\operatorname{loc}} \)-mappings with weighted bounded \( (q,p) \)-distortion,” Complex Var. Elliptic Equ., vol. 66, no. 5, 1037–1072 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. Ukhlov A. and Vodop’yanov S.K., “Mappings with bounded \( (P,Q) \)-distortion on Carnot groups,” Bull. Sci. Math., vol. 134, no. 6, 605–634 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  10. Vuorinen M., Conformal Geometry and Quasiconformal Mappings, Springer, Berlin, Heidelberg, New York, London, Paris, and Tokyo (1988) (Lect. Notes Math.; vol. 1319).

    Book  MATH  Google Scholar 

  11. Tukia P. and Väisälä J., “Quasisymmetric embeddings of metric spaces,” Ann. Acad. Sci. Fenn. Ser. AI Math., vol. 5, no. 1, 97–114 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  12. Väisälä J., “Quasimöbius maps,” J. Anal. Math., vol. 44, no. 1, 218–234 (1984/85).

    Article  MATH  Google Scholar 

  13. Kuratowski K., Topology. Vols. 1 and 2, Academic and Polish Scientific, New York etc. (1966, 1969).

    MATH  Google Scholar 

  14. Aseev V.V., “Generalized angles in Ptolemaic Möbius structures,” Sib. Math. J., vol. 59, no. 2, 189–201 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. Aseev V.V., “Generalized angles in Ptolemaic Möbius structures. II,” Sib. Math. J., vol. 59, no. 5, 768–777 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. Lehto O. and Virtanen K., Quasikonforme Abbildungen, Springer, Berlin, Heidelberg, and New York (1965).

    Book  MATH  Google Scholar 

  17. Ahlfors L.V., Lectures on Quasiconformal Mappings, Amer. Math. Soc., Providence (2006).

    Book  MATH  Google Scholar 

  18. Aseev V.V., “Multivalued mappings with the quasimöbius property,” Sib. Math. J., vol. 60, no. 5, 741–756 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  19. Shabat B.V., An Introduction to Complex Analysis, Nauka, Moscow (1969) [Russian].

    Google Scholar 

  20. Abrosimov N.V. and Aseev V.V., “Multivalued quasimöbius property and bounded turning,” Sib. Electr. Math. Reports (in press).

  21. Aseev V.V., “Multivalued quasimöbius mappings from circle to circle,” Sib. Math. J., vol. 62, no. 1, 14–22 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  22. Forster O.F., Lectures on Riemann Surfaces, Springer, New York (1981).

    Book  MATH  Google Scholar 

  23. Goluzin G.M., Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence (1969).

    Book  MATH  Google Scholar 

  24. Newman M.H.A., Elements of the Topology of Plane Sets of Points, Cambridge University, Cambridge (1939).

    Google Scholar 

Download references

Acknowledgment

The author is grateful to the referee for the favorable opinion and suggestions that were implemented in the final version of this article.

Funding

The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Aseev.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 3, pp. 450–464. https://doi.org/10.33048/smzh.2023.64.302

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aseev, V.V. The Multi-Valued Quasimöbius Mappings on the Riemann Sphere. Sib Math J 64, 514–524 (2023). https://doi.org/10.1134/S0037446623030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623030023

Keywords

UDC

Navigation