Skip to main content
Log in

On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the separation from zero of a sequence \( \phi \) to obtain the estimates of the form \( {\phi(n)/n} \) for the rate of pointwise convergence of ergodic averages. Each of these \( \phi \) is shown to be separated from zero for mixings which is not always so for weak mixings. Moreover, for the characteristic function of a nontrivial set, it is shown that there exists a measure preserving transformation with arbitrarily slow decay of ergodic averages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rokhlin V. A., On the Fundamental Ideas of Measure Theory, Amer. Math. Soc., Providence (1952).

    Google Scholar 

  2. Kornfeld I. P., Sinai Ya. G., and Fomin S. V., Ergodic Theory, Springer, New York (1981).

    Google Scholar 

  3. Kachurovskii A. G., “The rate of convergence in ergodic theorems,” Russian Math. Surveys, vol. 51, no. 4, 653–703 (1996).

    Article  MathSciNet  Google Scholar 

  4. Derriennic Y., “Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the central limit theorem,” Discrete Cont. Dyn. Syst., vol. 15, no. 1, 143–158 (2006).

    Article  MathSciNet  Google Scholar 

  5. Kachurovskii A. G. and Podvigin I. V., “Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems,” Trans. Moscow Math. Soc., vol. 77, no. 1, 1–53 (2016).

    Article  MathSciNet  Google Scholar 

  6. Kachurovskii A. G. and Podvigin I. V., “Measuring the rate of convergence in the Birkhoff ergodic theorem,” Math. Notes, vol. 106, no. 1, 52–62 (2019).

    Article  MathSciNet  Google Scholar 

  7. Podvigin I. V., “Lower bound of the supremum of ergodic averages for \( {𝕑^{d}} \) and \( {𝕉^{d}} \)-actions,” Sib. Electr. Math. Reports, vol. 17, 626–636 (2020).

    MathSciNet  MATH  Google Scholar 

  8. Blum J. R. and Hanson D. L., “On the mean ergodic theorem for subsequences,” Bull. Amer. Math. Soc., vol. 66, no. 6, 308–311 (1960).

    Article  MathSciNet  Google Scholar 

  9. Bergelson V., del Junco A., Lemanczyk M., and Rosenblatt J., “Rigidity and non-recurrence along sequences,” Ergodic Theory Dynam. Systems, vol. 34, no. 5, 1464–1502 (2014).

    Article  MathSciNet  Google Scholar 

  10. Bellow A. and Losert V., “The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences,” Trans. Amer. Math. Soc., vol. 288, no. 1, 307–345 (1985).

    Article  MathSciNet  Google Scholar 

  11. Atkinson G., “Recurrence of co-cycles and random walks,” J. London Math. Soc. (2), vol. 13, no. 3, 486–488 (1976).

    Article  MathSciNet  Google Scholar 

  12. Schmidt K., “On recurrence,” Z. Wahrscheinlichkeitstheor. Verw. Geb., vol. 68, no. 1, 75–95 (1984).

    Article  Google Scholar 

  13. Shneiberg I. Ya., “Zeros of integrals along trajectories of ergodic systems,” Funct. Anal. Appl., vol. 19, no. 2, 160–161 (1985).

    Article  MathSciNet  Google Scholar 

  14. Stepin A. M., “Spectral properties of generic dynamical systems,” Math. USSR-Izv., vol. 29, no. 1, 159–192 (1987).

    Article  Google Scholar 

  15. Tikhonov S. V., “A complete metric in the set of mixing transformations,” Sb. Math., vol. 198, no. 4, 575–596 (2007).

    Article  MathSciNet  Google Scholar 

  16. Friedman N., Gabriel P., and King J., “An invariant for rigid rank-1 transformations,” Ergodic Theory Dinam. Systems, vol. 8, no. 1, 53–72 (1988).

    Article  MathSciNet  Google Scholar 

  17. Ferenczi S., “Systems of finite rank,” Colloq. Math., vol. 73, no. 1, 35–65 (1997).

    Article  MathSciNet  Google Scholar 

  18. James J., Koberda T., Lindsey K., Silva C. E., and Speh P., “On ergodic transformations that are both weakly mixing and uniformly rigid,” New York J. Math., vol. 15, 393–403 (2009).

    MathSciNet  MATH  Google Scholar 

  19. Yancey K. B., “On weakly mixing homeomorphisms of the two-torus that are uniformly rigid,” J. Math. Anal. Appl., vol. 399, no. 2, 524–541 (2013).

    Article  MathSciNet  Google Scholar 

  20. Kunde P., “Uniform rigidity sequences for weak mixing diffeomorphisms on \( 𝔻^{2},𝔸 \) and \( 𝕋^{2} \),” J. Math. Anal. Appl., vol. 429, no. 1, 111–130 (2015).

    Article  MathSciNet  Google Scholar 

  21. Eisner T. and Grivaux S., “Hilbertian Jamison sequences and rigid dynamical systems,” J. Funct. Anal., vol. 261, no. 7, 2013–2052 (2011).

    Article  MathSciNet  Google Scholar 

  22. Adams T., “Tower multiplexing and slow weak mixing,” Colloq. Math., vol. 138, no. 1, 47–71 (2015).

    Article  MathSciNet  Google Scholar 

  23. Kachurovskii A. G., Podvigin I. V., and Svishchev A. A., “Zero-one law for the rates of convergence in the Birkhoff ergodic theorem with continuous time,” Mat. Tr., vol. 24, no. 2, 65–80 (2021).

    Article  MathSciNet  Google Scholar 

  24. Halasz G., “Remarks on the remainder in Birkhoff’s ergodic theorem,” Acta Math. Acad. Scient. Hung., vol. 28, no. 3, 389–395 (1976).

    Article  MathSciNet  Google Scholar 

  25. Krengel U., “On the speed of convergence in the ergodic theorem,” Mon. Math., vol. 86, 3–6 (1978).

    Article  MathSciNet  Google Scholar 

  26. Kakutani S. and Petersen K., “The speed of convergence in the ergodic theorem,” Monatsh. Math., vol. 91, 11–18 (1981).

    Article  MathSciNet  Google Scholar 

  27. Kachurovskii A. G., Podvigin I. V., and Svishchev A. A., “The maximum pointwise rate of convergence in Birkhoff’s ergodic theorem,” Zap. Nauchn. Sem. POMI, vol. 498, 18–25 (2020).

    MathSciNet  MATH  Google Scholar 

  28. Del Junco A. and Rosenblatt J. M., “Counterexamples in ergodic theory and number theory,” Math. Ann., vol. 245, 185–197 (1979).

    Article  MathSciNet  Google Scholar 

  29. Volný D., “On limit theorems and category for dynamical systems,” Yokohama Math. J., vol. 38, 29–35 (1990).

    MathSciNet  MATH  Google Scholar 

  30. Volny D. and Weiss B., “Coboundaries in \( {L^{\infty}_{0}} \),” Ann. Inst. H. Poincaré Probab. Stat., vol. 40, no. 6, 771–778 (2004).

    Article  MathSciNet  Google Scholar 

  31. Kwapien S., “Linear functionals invariant under measure preserving transformations,” Math. Nachr., vol. 119, no. 1, 175–179 (1984).

    Article  MathSciNet  Google Scholar 

  32. Halmos P. R., Lectures on Ergodic Theory, Chelsea, New York (1960).

    MATH  Google Scholar 

  33. Adams T. and Rosenblatt J., “Joint coboundaries,” in: Dynamical Systems, Ergodic Theory, and Probability: In Memory of Kolya Chernov, vol. 698, Amer. Math. Soc., Providence (2017), 5–33.

  34. Ber A. F., Borst M. J., and Sukochev F. A., “Full proof of Kwapien’s theorem on representing bounded mean zero functions on \( {[0,1]} \),” Studia Math., vol. 259, no. 3, 241–270 (2021).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project 0314–2019–0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Podvigin.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 2, pp. 379–391. https://doi.org/10.33048/smzh.2022.63.209

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podvigin, I.V. On Possible Estimates of the Rate of Pointwise Convergence in the Birkhoff Ergodic Theorem. Sib Math J 63, 316–325 (2022). https://doi.org/10.1134/S0037446622020094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622020094

Keywords

UDC

Navigation