Skip to main content
Log in

On spectral measures and convergence rates in von Neumann’s Ergodic theorem

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We show that the power-law decay exponents in von Neumann’s Ergodic Theorem (for discrete systems) are the pointwise scaling exponents of a spectral measure at the spectral value 1. In this work we also prove that, under an assumption of weak convergence, in the absence of a spectral gap, the convergence rates of the time-average in von Neumann’s Ergodic Theorem depend on sequences of time going to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aloisio, M.: A note on spectrum and quantum dynamics. J. Math. Anal. Appl. 478, 595–603 (2019)

    Article  MathSciNet  Google Scholar 

  2. Aloisio, M., Carvalho, S.L., de Oliveira, C.R.: Refined scales of decaying rates of operator semigroups on Hilbert spaces: typical behavior. Proc. Am. Math. Soc. 148, 2509–2523 (2020)

    Article  MathSciNet  Google Scholar 

  3. Badea, C., Müller, V.: On weak orbits of operators. Topol. Appl. 156, 1381–1385 (2009)

    Article  MathSciNet  Google Scholar 

  4. Barbaroux, J.-M., Combes, J.-M., Montcho, R.: Remarks on the relation between quantum dynamics and fractal spectra. J. Math. Anal. Appl. 213, 698–722 (1997)

    Article  MathSciNet  Google Scholar 

  5. Barros, V., Rousseau, J.: Shortest distance between multiple orbits and generalized fractal dimensions. Ann. Henri. Poincaré 22, 1853–1885 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. Barros, V., Liao, L., Rousseau, J.: On the shortest distance between orbits and the longest common substring problem. Adv. Math. 344, 311–339 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bary, N.K.: A Treatise on Trigonometric Series, Fizmatgiz, Moscow 1961. Pergamon Press, Oxford-London-New York-Paris-Frankfurt (1964)

    Google Scholar 

  8. Ben-Artzi, J., Morisse, B.: Uniform convergence in von Neumann’s ergodic theorem in the absence of a spectral gap. Ergod. Theory Dyn. Syst. 41, 1601–1611 (2021)

    Article  MathSciNet  Google Scholar 

  9. Carvalho, S.L., Oliveira, C.R.: Correlation wonderland theorems. J. Math. Phys. 57, 063501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Carvalho, S.L., Oliveira, C.R.: Refined scales of weak-mixing dynamical systems: typical behaviour. Ergod. Theory Dyn. Syst. 40, 3296–3309 (2021)

    Article  MathSciNet  Google Scholar 

  11. Cornfeld, I.P., Fomin, S.V., Sinai, Y.G., Sossinskii, A.B.: Ergodic Theory. Springer, New York (1982)

    Book  Google Scholar 

  12. de Oliveira, C.R.: Intermediate Spectral Theory and Quantum Dynamics. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  13. Damanik, D., Fillman, J., Vance, R.: Dynamics of unitary operators. J. Fractal Geom. 1, 391–425 (2014)

    Article  MathSciNet  Google Scholar 

  14. Gaposhkin, V.F.: Convergence of series connected with stationary sequences. Izv. Akad. Nauk SSSR Ser. Mat. 39, 1366–1392 (1975)

    MathSciNet  Google Scholar 

  15. Holschneider, M.: Fractal wavelet dimensions and localization. Commun. Math. Phys. 160, 457–473 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kachurovskii, A. G.: The rate of convergence in ergodic theorems. Uspekhi Mat. Nauk 51(4), 73–124 (1996). English transl. in Russian Math. Surveys 51(4), 653–703 (1996)

  17. Kachurovskii, A.G., Podvigin, I.V.: Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems. Trans. Moscow Math. Soc. 77, 1–53 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kachurovskii, A. G., Reshetenko, A.V.: On the rate of convergence in von Neumann’s ergodic theorem with continuous time. Mat. Sb. 201:4, 25–32 (2010); English transl. in Sb. Math. 201:4, 493–500 (2010)

  19. Kachurovskii, A.G., Sedalishchev, V.V.: Constants in estimates for the rates of convergence in von Neumann’s and Birkhoff’s ergodic theorems. Matematicheski Sbornik 202, 1105–1125 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kachurovskii, A.G., Sedalishchev, V.V.: On the constants in the estimates of the rate of convergence in von Neumann’s ergodic theorem. Mat. Zametki 87(5), 756–763 (2010)

    MathSciNet  Google Scholar 

  21. Klein, S., Liu, X.-C., Melo, A.: Uniform convergence rate for Birkhoff means of certain uniquely ergodic toral maps. Ergod. Theory Dyn. Syst. 41, 3363–3388 (2021)

    Article  MathSciNet  Google Scholar 

  22. Podvigin, I.V.: Exponent of convergence of a sequence of ergodic averages. Math. Notes 112, 271–280 (2022)

    Article  MathSciNet  Google Scholar 

  23. Rohlin, V.: Lectures on the entropy theory of transformations with invariant measure. Russ. Math. Surveys 22, 1–52 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  24. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1991)

    Google Scholar 

  25. von Neumann, J.: Proof of the quasi-ergodic hypothesis. Proc. Nat. Acad. Sci. USA 18, 70–82 (1932)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for valuable suggestions that have substantially improved the exposition of the manuscript.

Funding

S. L. Carvalho thanks the partial support by FAPEMIG (Minas Gerais state agency; Universal Project, under contract 001/17/CEX-APQ-00352-17) and C. R. de Oliveira thanks the partial support by CNPq (a Brazilian government agency, under contract 303689/2021-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Aloisio.

Additional information

Communicated by Gerald Teschl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Here, we present the proofs of Lemma 1 and Theorem 2.

1.1 Proof of Lemma 1

For each \(K \in {\mathbb {N}}\) and each \(z \in \partial {\mathbb {D}}{\setminus }\{1\}\), recall that

$$\begin{aligned} \displaystyle \sum _{j=0}^{K-1} z^j= & {} \frac{z^K -1}{z-1}. \end{aligned}$$

Note that, for each \(\psi \in {\mathcal {H}}\), \(\mu _{\psi - \psi ^*}^U (\{1\})=0\). Thus, by the Spectral Theorem, it follows that for each \(\psi \in {\mathcal {H}}\) and each \(K \in {\mathbb {N}}\),

$$\begin{aligned} \left\| {\frac{1}{K}} \displaystyle \sum _{j=0}^{K-1} U^j\psi - \psi ^* \right\| ^2= & {} \left\| {\frac{1}{K}} \displaystyle \sum _{j=0}^{K-1} U^j ( \psi - \psi ^*) \right\| ^2\\ {}= & {} \left\| {\frac{1}{K}} \displaystyle \sum _{j=0}^{K-1} \int _{ \partial {\mathbb {D}}} z^j dP^U(z)( \psi - \psi ^*)\right\| ^2\\ {}= & {} \left\| {\frac{1}{K}} \int _{ \partial {\mathbb {D}} } \frac{z^K -1}{z-1} dP^U(z)(\psi - \psi ^*)\right\| ^2\\ {}= & {} \frac{1}{K^2} \int _{ \partial {\mathbb {D}} } \left| \frac{z^K -1}{z-1} \right| ^2 d\mu _{\psi - \psi ^*}^U(z). \end{aligned}$$

1.2 Proof of Theorem 2

Since, for each \(\psi \in {\mathcal {H}}\), \({{\,\textrm{supp}\,}}(\mu _{\psi - \psi ^*}^U) \subset \sigma (U) \subset \{1\} \cup \{e^{i\theta } \mid \theta \in (-\pi ,-\gamma ] \cup (\gamma ,\pi ] \}\) and \(\mu _{\psi - \psi ^*}^U (\{1\})=0\), it follows from Lemma 1 that for each \(\psi \in {\mathcal {H}}\) and each \(K \in {\mathbb {N}}\),

$$\begin{aligned}\nonumber \left\| {\frac{1}{K}} \displaystyle \sum _{j=0}^{K-1} U^j\psi - \psi ^* \right\| ^2= & {} \frac{1}{K^2} \int _{ \partial {\mathbb {D}}} \left| \frac{z^K -1}{z-1} \right| ^2 d\mu _{\psi - \psi ^*}^U(z)\\ \nonumber\le & {} \frac{1}{ K^2} \left( \sup _{z \in \{e^{i\theta } \mid \theta \in (-\pi ,-\gamma ] \cup (\gamma ,\pi ] \}} \left| \frac{z^K -1}{z-1} \right| ^2 \right) \mu _{\psi - \psi ^*}^U(\partial {\mathbb {D}}) \\ \nonumber= & {} \frac{1}{ K^2} \left( \sup _{\theta \in (-\pi ,-\gamma ] \cup (\gamma ,\pi ] } \left| \frac{\sin (K\theta /2)}{\sin (\theta /2)} \right| ^2 \right) \Vert \psi - \psi ^*\Vert ^2 \\ \nonumber\le & {} \frac{1}{ (K\sin (\gamma /2))^2}\, \Vert (I - P^U({\{1\}}))\psi \Vert ^2\\\le & {} \frac{16}{\gamma ^2 K^2} \, \Vert \psi \Vert ^2, \end{aligned}$$

where we have used that \(\gamma /4\le \sin (\gamma /2)\) for each \(0<\gamma <\pi \). Hence, for every \(K \in {\mathbb {N}}\),

$$\begin{aligned} \left\| {\frac{1}{K}} \displaystyle \sum _{j=0}^{K-1} U^j - P^U(\{1\}) \right\| \le \frac{4}{\gamma K}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloisio, M., Carvalho, S.L., de Oliveira, C.R. et al. On spectral measures and convergence rates in von Neumann’s Ergodic theorem. Monatsh Math 203, 543–562 (2024). https://doi.org/10.1007/s00605-023-01928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01928-w

Keywords

Mathematics Subject Classification

Navigation