Skip to main content
Log in

On the Core and Shapley Value for Regular Polynomial Games

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Considering some classes of polynomial cooperative games, we describe the integral representation of the Shapley values and the support functions of their cores. Also, we analyze the relationship between the Shapley values and the polar forms of homogeneous polynomial games. The found formula for the support function of the core of a convex game is applied for the dual description of the Harsanyi sets of finite cooperative games. The main peculiarity of the proposed approach to the study of optimal solutions of game theory is a systematic use of the extensions of polynomial set functions to the corresponding measures on symmetric powers of the initial measure spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The synonym Shapley vector is also used in the literature (see, for example, [2]).

  2. In what follows, when the indication of the feasibility of the domain of definition of the functions of the class \( {\mathcal{K}}\subseteq{\mathcal{V}} \) under consideration is relevant, we use the more detailed notation \( {\mathcal{K}}(B) \).

  3. The polar form of a homogeneous polynomial functional \( L \) of order \( n \) on a vector space \( X \) is the function \( L^{*}:X^{n}\rightarrow{𝕉} \) defined by the formula \( L^{*}(x_{1},\dots,x_{n}):=\frac{1}{n!}\sum\nolimits_{\omega\subseteq\{1,\dots,n\}}(-1)^{n-|\omega|}L(\sum\nolimits_{i\in\omega}x_{i}) \) (see, for example, [16, 18]).

  4. The homogeneity, polynomiality, and continuity of the functional \( P_{v} \) for a homogeneous game \( v \) were established in [5] (see also [17]).

  5. Recall (see [2]) that a finite game \( v\in V(Q) \) is called convex if \( v(e\cup e^{\prime})+v(e\cap e^{\prime})\geq v(e)+v(e^{\prime}) \) for all \( e,e^{\prime}\subseteq Q \).

  6. As usual, for \( x=(x_{i})_{i\in Q}\in{𝕉}^{Q} \) and \( e\subseteq Q \), we put \( x(e):=\sum\nolimits_{i\in e}x_{i} \).

  7. Recall [6, 21] that a game \( v \) is called almost positive if all its dividends \( v_{e} \) corresponding nontrivial coalitions are nonnegative: \( |e|\geq 2\Rightarrow v_{e}\geq 0 \).

  8. A player \( i\in e \) is called \( \pi \)-first (\( \pi \)-last) in \( e \) if all remaining player in \( e \) succeed \( i \) (precede \( i \)).

  9. A function \( \beta \) is called supermodular if \( \beta(e_{1}\cup e_{2})+\beta(e_{1}\cap e_{2})\geq\beta(e_{1})+\beta(e_{2}) \) for all \( e_{1},e_{2}\in{\mathcal{L}} \) (when there is always equality instead of inequality, \( \beta \) is called additive).

References

  1. Aumann R. J. and Shapley L. S., Values for Non-Atomic Games, Princeton University, Princeton (1974).

    MATH  Google Scholar 

  2. Rosenmüller J., Kooperative Spiele und Märkte, Springer, Heidelberg (1971).

    Book  Google Scholar 

  3. Bondareva O. N., “Some applications of linear programming to the theory of cooperative games,” Probl. Cybernet., vol. 10, 119–140 (1963).

    MathSciNet  MATH  Google Scholar 

  4. Marinacci M. and Montrucchio L., “Stable cores of large games,” Intern. J. Game Theory, vol. 33, no. 2, 189–213 (2005).

    Article  MathSciNet  Google Scholar 

  5. Vasil’ev V. A., “The Shapley functional and the polar form of homogeneous polynomial games,” Siberian Adv. Math., vol. 8, no. 4, 109–150 (1998).

    MathSciNet  MATH  Google Scholar 

  6. Vasil’ev V. A., “Nonadditive integration and some solutions of cooperative games,” Mat. Teor. Igr Pril., vol. 13, no. 1, 5–27 (2021).

    MathSciNet  MATH  Google Scholar 

  7. Vasil’ev V. A., “Support function of the core of a convex cooperative game,” Optimization, vol. 21, 30–35 (1978).

    MATH  Google Scholar 

  8. Vasil’ev V. A. and Zuev M. G., “Support function of the core of a convex cooperative game on a metric compactum,” Optimization, vol. 44, 155–160 (1988).

    MATH  Google Scholar 

  9. Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Wolters–Noordhoff, Groningen (1967).

    MATH  Google Scholar 

  10. Kantorovich L. V. and Akilov G. P., Functional Analysis, Pergamon, Oxford and New York (1982).

    MATH  Google Scholar 

  11. Vasil’ev V. A., “Polar representation of Shapley value: nonatomic polynomial games,” Contrib. Game Theory Management, vol. 6, 434–446 (2013).

    MathSciNet  MATH  Google Scholar 

  12. Owen G., “Multilinear extensions of games,” J. Management Sci., vol. 18, no. 5, 64–79 (1972).

    MathSciNet  MATH  Google Scholar 

  13. Vasil’ev V. A., “One axiomatization of generalized Owen extension,” Mat. Teor. Igr Pril., vol. 1, no. 2, 3–13 (2009).

    MATH  Google Scholar 

  14. Vasil’ev V. A., “On a space of nonadditive set functions,” Optimization, vol. 16, 99–120 (1975).

    MathSciNet  Google Scholar 

  15. Aliprantis C. D. and Border K. C., Infinite Dimensional Analysis, Springer, Berlin (1994).

    Book  Google Scholar 

  16. Hille E. and Phillips R. S., Functional Analysis and Semigroups, Amer. Math. Soc., Providence (1957).

    MATH  Google Scholar 

  17. Vasil’ev V. A., “The general characteristics of polynomial set functions,” Optimization, vol. 14, 101–123 (1974).

    Google Scholar 

  18. Vasil’ev V. A., “Polar forms, \( p \)-values, and the core,” in: Approximation, Optimization and Mathematical Economics, Physica, Heidelberg and New York (2001), 357–368.

  19. Vasil’ev V. A., “The Shapley value for games of bounded polynomial variation,” Optimization, vol. 17, 5–26 (1975).

    Google Scholar 

  20. Lyapunov A. A., The Problems of the Theory of Sets and the Theory of Functions, Nauka, Moscow (1979) [Russian].

    Google Scholar 

  21. Dehez P., “On Harsanyi dividends and asymmetric values,” Intern. Game Theory Rev., vol. 19, no. 3, 1–36 (2017).

    Article  MathSciNet  Google Scholar 

  22. Vasil’ev V. A., “Cores and generalized NM-solutions for some classes of cooperative games,” in: Russian Contributions to Game Theory and Equilibrium Theory. (T. S. H. Driessen, G. van der Laan, V. Vasil’ev, E. Yanovskaya, eds.), Springer, Berlin, Heidelberg, and New York (2006), 91–149.

  23. Vasil’ev V. A., “Weber polyhedron and weighted Shapley values,” Intern. Game Theory Rev., vol. 9, no. 1, 139–150 (2007).

    Article  MathSciNet  Google Scholar 

  24. Vasil’ev V. A. and van der Laan G., “The Harsanyi set for cooperative \( TU \)-games,” Siberian Adv. Math., vol. 12, no. 2, 97–125 (2002).

    MathSciNet  MATH  Google Scholar 

  25. Kindler J., “A Mazur–Orlicz type theorem for sub-modular functions,” J. Math. Anal. Appl., vol. 120, 533–546 (1986).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work was supported by the Program of Basic Scientific Research of the Siberian Branch of the Russian Academy of Sciences (Grant no. 0314–2019–0018) and the Russian Foundation for Basic Research (Grant no. 19–10–00910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Vasil’ev.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2022, Vol. 63, No. 1, pp. 77–94. https://doi.org/10.33048/smzh.2022.63.105

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, V.A. On the Core and Shapley Value for Regular Polynomial Games. Sib Math J 63, 65–78 (2022). https://doi.org/10.1134/S0037446622010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446622010050

Keywords

UDC

Navigation