Skip to main content
Log in

The Area of Graphs on Arbitrary Carnot Groups with Sub-Lorentzian Structure

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove the area formula for the classes of graph mappings on the Carnot groups and nilpotent graded groups with sub-Lorentzian structure which are of arbitrary dimension and depth. The number of spacelike and timelike directions is arbitrary as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miklyukov V. M., Klyachin A. A., and Klyachin V. A.,Maximal Surfaces in Minkowski Space-Time (2011) (Available at http://www.uchimsya.info/maxsurf.pdf).

    MATH  Google Scholar 

  2. Naber G. L.,The Geometry of Minkowski Spacetime. An Introduction to the Mathematics of the Special Theory of Relativity, Springer-Verlag, Berlin (1992) (Appl. Math. Sci.; V. 92).

    MATH  Google Scholar 

  3. Nielsen B., “Minimal immersion, Einstein’s equations and Mach’s principle,” J. Geom. Phys., vol. 4, 1–20 (1987).

    MathSciNet  MATH  Google Scholar 

  4. Berestovskii V. N. and Gichev V. M., “Metrized left-invariant orders on topological groups,” St. Petersburg Math. J., vol. 11, no. 4, 543–565 (2000).

    MathSciNet  MATH  Google Scholar 

  5. Grochowski M., “Reachable sets for the Heisenberg sub-Lorentzian structure on \( \mathbb{R}^{3} \). An estimate for the distance function,” J. Dyn. Control Syst., vol. 12, no. 2, 145–160 (2006).

    MathSciNet  MATH  Google Scholar 

  6. Grochowski M., “Properties of reachable sets in the sub-Lorentzian geometry,” J. Geom. Phys., vol. 59, no. 7, 885–900 (2009).

    MathSciNet  MATH  Google Scholar 

  7. Grochowski M., “Normal forms and reachable sets for analytic Martinet sub-Lorentzian structures of Hamiltonian type,” J. Dyn. Control Syst., vol. 17, no. 1, 49–75 (2011).

    MathSciNet  MATH  Google Scholar 

  8. Grochowski M., “Reachable sets for contact sub-Lorentzian metrics on \( \mathbb{R}^{3} \). Application to control affine systems with the scalar input,” J. Math. Sci., vol. 177, no. 3, 383–394 (2011).

    MathSciNet  MATH  Google Scholar 

  9. Grochowski M., “The structure of reachable sets for affine control systems induced by generalized Martinet sub-Lorentzian metrics,” ESAIM Control Optim. Calc. Var., vol. 18, no. 4, 1150–1177 (2012).

    MathSciNet  MATH  Google Scholar 

  10. Grochowski M., “The structure of reachable sets and geometric optimality of singular trajectories for certain affine control systems in \( \mathbb{R}^{3} \). The sub-Lorentzian approach,” J. Dyn. Control Syst., vol. 20, no. 1, 59–89 (2014).

    MathSciNet  MATH  Google Scholar 

  11. Grochowski M., “Geodesics in the sub-Lorentzian geometry,” Bull. Polish Acad. Sci. Math., vol. 50, no. 2, 161–178 (2002).

    MathSciNet  MATH  Google Scholar 

  12. Grochowski M., “Remarks on the global sub-Lorentzian geometry,” Anal. Math. Phys., vol. 3, no. 4, 295–309 (2013).

    MathSciNet  MATH  Google Scholar 

  13. Korolko A. and Markina I., “Nonholonomic Lorentzian geometry on some H-type groups,” J. Geom. Anal., vol. 19, no. 4, 864–889 (2009).

    MathSciNet  MATH  Google Scholar 

  14. Korolko A. and Markina I., “Geodesics on H-type quaternion groups with sub-Lorentzian metric and their physical interpretation,” Complex Anal. Oper. Theory, vol. 4, no. 3, 589–618 (2010).

    MathSciNet  MATH  Google Scholar 

  15. Krym V. R. and Petrov N. N., “Equations of motion of a charged particle in a five-dimensional model of the general theory of relativity with a nonholonomic four-dimensional velocity space,” Vestn. St. Petersburg Univ. Math., vol. 40, no. 1, 52–60 (2007).

    MathSciNet  MATH  Google Scholar 

  16. Krym V. R. and Petrov N. N., “The curvature tensor and the Einstein equations for a four-dimensional nonholonomic distribution,” Vestn. St. Petersburg Univ. Math., vol. 41, no. 3, 256–265 (2008).

    MathSciNet  MATH  Google Scholar 

  17. Craig W. and Weinstein S., “On determinism and well-posedness in multiple time dimensions,” Proc. R. Soc. A., vol. 465, no. 2110, 3023–3046 (2008).

    MathSciNet  MATH  Google Scholar 

  18. Bars I. and Terning J.,Extra Dimensions in Space and Time, Springer-Verlag, New York (2010).

    MATH  Google Scholar 

  19. Velev M., “Relativistic mechanics in multiple time dimensions,” Physics Essays, vol. 25, no. 3, 403–438 (2012).

    Google Scholar 

  20. Karmanova M. B., “The area formula for graphs on \( 4 \)-dimensional \( 2 \)-step sub-Lorentzian structures,” Sib. Math. J., vol. 56, no. 5, 852–871 (2015).

    MathSciNet  MATH  Google Scholar 

  21. Karmanova M. B., “The area of graph surfaces on four-dimensional two-step sub-Lorentzian structures,” Dokl. Math., vol. 92, no. 1, 456–459 (2015).

    MathSciNet  MATH  Google Scholar 

  22. Karmanova M. B., “Maximal graph surfaces on four-dimensional two-step sub-Lorentzian structures,” Sib. Math. J., vol. 57, no. 2, 274–284 (2016).

    MathSciNet  MATH  Google Scholar 

  23. Karmanova M. B., “Graph surfaces on five-dimensional sub-Lorentzian structures,” Sib. Math. J., vol. 58, no. 1, 91–108 (2017).

    MathSciNet  MATH  Google Scholar 

  24. Karmanova M. B., “Area formula for graph surfaces on five-dimensional sub-Lorentzian structures,” Dokl. Math., vol. 93, no. 2, 216–219 (2016).

    MathSciNet  MATH  Google Scholar 

  25. Karmanova M. B., “Maximal surfaces on five-dimensional group structures,” Sib. Math. J., vol. 59, no. 3, 442–457 (2018).

    MathSciNet  MATH  Google Scholar 

  26. Karmanova M. B., “Variations of nonholonomic-valued mappings and their applications to maximal surface theory,” Dokl. Math., vol. 93, no. 3, 276–279 (2016).

    MathSciNet  MATH  Google Scholar 

  27. Karmanova M. B., “Surface area on two-step sub-Lorentzian structures with multi-dimensional time,” Dokl. Math., vol. 95, no. 2, 218–221 (2017).

    MathSciNet  MATH  Google Scholar 

  28. Karmanova M. B., “Class of maximal graph surfaces on multidimensional two-step sub-Lorentzian structures,” Dokl. Math., vol. 97, no. 3, 207–210 (2018).

    MathSciNet  MATH  Google Scholar 

  29. Karmanova M. B., “Graphs of Lipschitz mappings on two-step sub-Lorentzian structures with multidimensional time,” Dokl. Math., vol. 98, no. 5, 360–363 (2018).

    MATH  Google Scholar 

  30. Karmanova M. B., “Two-step sub-Lorentzian structures and graph surfaces,” Izv. Math., vol. 84, no. 1, 52–94 (2020).

    MathSciNet  MATH  Google Scholar 

  31. Karmanova M. B., “Sufficient maximality conditions for surfaces on two-step sub-Lorentzian structures,” Dokl. Math., vol. 99, no. 6, 214–217 (2019).

    MATH  Google Scholar 

  32. Karmanova M. B., “Area of graph surfaces on Carnot groups with sub-Lorentzian structure,” Dokl. Math., vol. 99, no. 2, 145–148 (2019).

    MathSciNet  MATH  Google Scholar 

  33. Karmanova M. B., “Graphs of nonsmooth contact mappings on Carnot groups with sub-Lorentzian structure,” Dokl. Math., vol. 99, no. 3, 282–285 (2019).

    MathSciNet  MATH  Google Scholar 

  34. Folland G. B. and Stein E. M.,Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton (1982).

    MATH  Google Scholar 

  35. Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang un,” Ann. Math., vol. 129, no. 1, 1–60 (1989).

    MathSciNet  MATH  Google Scholar 

  36. Karmanova M. B., “The polynomial sub-Riemannian differentiability of some Hölder mappings of Carnot groups,” Sib. Math. J., vol. 58, no. 2, 232–254 (2017).

    MathSciNet  MATH  Google Scholar 

  37. Karmanova M. B., “The graphs of Lipschitz functions and minimal surfaces on Carnot groups,” Sib. Math. J., vol. 53, no. 4, 672–690 (2012).

    MathSciNet  MATH  Google Scholar 

  38. Vodopyanov S., “Geometry of Carnot–Carathéodory spaces and differentiability of mappings,” in: The Interaction of Analysis and Geometry. Contemporary Mathematics, vol. 424, Amer. Math. Soc., Providence (2007), 247–301.

  39. Ostrowsky A., “Sur la détermination des bornes inférieures pour une classe des déterminants,” Bull. Sci. Math., vol. 61, 19–32 (1937).

    Google Scholar 

  40. Karmanova M. B., “An area formula for Lipschitz mappings of Carnot–Carathéodory spaces,” Izv. Math., vol. 78, no. 3, 475–499 (2014).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The author was supported by the Regional Mathematical Center of Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Karmanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanova, M.B. The Area of Graphs on Arbitrary Carnot Groups with Sub-Lorentzian Structure. Sib Math J 61, 648–670 (2020). https://doi.org/10.1134/S0037446620040084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446620040084

Keywords

UDC

Navigation