Skip to main content
Log in

Next-Generation Materials and Digital Additive Technologies for the Production of Resource Parts in FGUP VIAM: IV. Development of Superalloys

  • MANUFACTURE OF SPECIAL METAL PRODUCTS
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The works performed in FGUP VIAM to develop high-temperature cobalt- and nickel-based materials for the SLM technology are reviewed. They are compared with foreign analogs in terms of application and with the materials produced by traditional technologies. Promising works in the field of synthesizing high-temperature and intermetallic materials with a given texture are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. E. N. Kablov, A. G. Evgenov, M. M. Bakradze, S. V. Nerush, and O. A. Krupnina, “Next-generation materials and digital additive technologies for the production of resource parts of FGUP VIAM. Part 1. Synthesis materials and technologies,” Elektrometallurgiya, No. 1, 2–12 (2021). https://doi.org/10.31044/1684-5781-2022-0-1-2-12

    Article  Google Scholar 

  2. E. N. Kablov, A. G. Evgenov, M. M. Bakradze, S. V. Nerush, and O. A. Krupnina, “Next-generation materials and digital additive technologies for the production of resource parts of FGUP VIAM. Part 2. Compensation and control of deviations, HIP and heat treatment,” Elektrometallurgiya, No. 2, 2–12 (2021). https://doi.org/10.31044/1684-5781-2022-0-2-2-12

    Article  Google Scholar 

  3. E. N. Kablov, A. G. Evgenov, M. M. Bakradze, S. V. Nerush, and O. A. Krupnina, “Next-generation materials and digital additive technologies for the production of resource parts of FGUP VIAM. Part 3. Adaptation and creation of materials,” Elektrometallurgiya, No. 4, 15–25 (2021).

    Google Scholar 

  4. J. J. Lewandowski and M. Seifi, “Metal additive manufacturing: a review of mechanical properties,” The Annual Rev. Mater. Res. 46, 14.1–14.36 (2016). https://doi.org/10.1146/annurev-matsci-070115-032024

  5. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. by J. R. Davis. https://doi.org/10.1361/ncta2000p395

  6. E. N. Kablov, O. G. Ospennikova, and I. L. Svetlov, “Highly efficient cooling of the hot gas path blades of GTE,” Aviats. Mater. Tekhnol., No. 2, 3–14 (2017). https://doi.org/10.18577/2071-9140-2017-0-2-3-14

  7. N. J. Harrison, I. Todd, and K. Mumtaz, “Reduction of micro-cracking in nickel superalloys processed by selective laser melting: a fundamental alloy design approach,” Acta Mater., No. 94, 59–68 (2015).

  8. G. Marchese, G. Basile, E. Bassini, A. Aversa, M. Lombardi, D. Ugues, P. Fino, and S. Biamino, “Study of the microstructure and cracking mechanisms of hastelloy X produced by laser powder bed fusion,” Materials, No. 11 (106), 1–12 (2018). https://doi.org/10.3390/ma11010106

    Article  CAS  Google Scholar 

  9. L. N. Carter, M. M. Attallah, and R. C. Reed, “Laser powder bed fabrication of nickel-base superalloys: influence of parameters; characterisation, quantification and mitigation of cracking,” in Proceedings of 12th International Symposium on Superalloys (2012), pp. 577–586.

  10. L. N. Carter et al., “The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy,” J. Alloys Compd., No. 15, 338–347 (2014).

  11. L. E. Murr, E. Martinez, X. M. Pan, S. M. Gaytan, J. A. Castro, C. A. Terrazas, F. Medina, R. B. Wicker, and D. H. Abbott, “Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting,” Acta Mater. 61 (11), 4289–4296 (2013).

    Article  ADS  CAS  Google Scholar 

  12. X. Wang, N. Read, L. N. Carter, R. M. Ward, and M. M. Attallah, “Defect formation and its mitigation in selective laser melting of high γ' Ni-based superalloys,” in Proceedings of Conference on Superalloys 2016 (Minerals, Metals and Materials Society, 2016), pp. 351–358.

  13. R. Munoz-Moreno, V. D. Divya, O. M. D. M. Messe, T. Illston, S. Baker, and H. J. Stone, “Effect of heat treatment on the microstructure and texture of CM247 processed by selective laser melting,” in Proceedings of Conference on Superalloys 2016 (Minerals, Metals and Materials Society, 2016), pp. 375–382.

  14. A. Basak and S. Das, “A study on the effects of substrate crystallographic orientation on microstructural characteristics of René N5 processed through scanning laser epitaxy,” in Proceedings of Conference on Superalloys 2016 (Minerals, Metals and Materials Society, 2016), pp. 1040–1049.

  15. N. V. Petrushin, A. G. Evgenov, A. V. Zavodov, and I. A. Treninkov, “Structure and strength of a ZhS32-VI nickel superalloy fabricated by selective laser melting on a single-crystal substrate,” Materialovedenie, No. 11, 19–26 (2017).

    Google Scholar 

  16. I. A. Treninkov, A. V. Zavodov, and N. V. Petrushin, “Crystal structure and microstructure of a ZhS32-VI nickel superalloy synthesized by selective laser melting after high-temperature mechanical tests,” Aviats. Mater. Tekhnol., No. 1(54), 57–65 (2019). https://doi.org/10.18577/2071-9140-2019-0-1-57-65

  17. E. N. Kablov, N. V. Petrushin, L. B. Vasilenok, and G. I. Morozova, “Rhenium in nickel superalloys for gas turbine blades,” Materialovedenie, No. 3, 38–43 (2000).

    Google Scholar 

  18. R. C. Reed, The Superalloys. Fundamentals and Applications (United Kingdom at University Press, Cambridge, 2006).

    Book  Google Scholar 

  19. N. V. Petrushin, O. G. Ospennikova, and E. S. Elyutin, “Rhenium in single-crystal nickel superalloys for gas turbine engine blades,” Aviats. Mater. Tekhnol., No. S5, 5–16 (2014). https://doi.org/10.18577/2071-9140-2014-0-s5-5-16

  20. M. Huang and J. Zhu, “An overview of rhenium effect in single-crystal superalloys,” Rare Metals 35 (2), (2015). www etditorialmanager.com/rmet. Cited October 25, 2020.https://doi.org/10.1007/s12598-015-0597-z

  21. C. M. F. Rae and R. C. Reed, “The precipitation of topologically close-packed phases in rhenium-containing superalloys,” Acta Mater. 49 (10), 4113–4125 (2001).

    Article  ADS  CAS  Google Scholar 

  22. E. N. Kablov, N. V. Petrushin, M. B. Bronfin, and A. A. Alekseev, “Features of single-crystal nickel superalloys alloyed with rhenium,” Metally, No. 5, 47–57 (2006).

    Google Scholar 

  23. G. I. Morozova, O. B. Timofeeva, and N. V. Petrushin, “Structure and phase composition of a high-rhenium nickel superalloy,” Metalloved. Term. Obrab. Met., No. 2 (644), 10–16 (2009).

  24. W. S. Walston, E. W. Ross, K. S. O’Hara, and T. M. Pollock, “Nickel-base superalloy with high temperature strength and improved stability,” US Patent 5270123, 1993.

  25. A. Sato, H. Harada, T. Yokokawa, T. Murakumo, Y. Koizumi, T. Kobayashi, and H. Imai, “The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys,” Scr. Mater. 54 (9), 1679–1684 (2006).

    Article  CAS  Google Scholar 

  26. J. X. Zhang, T. M. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada, and S. Masaki, “Interfacial dislocation networks strengthening a fourth-generation single crystal TMS-138 superalloy,” Metall. Mater. Trans. A 33, 3741–3746 (2002).

    Article  Google Scholar 

  27. N. V. Petrushin, O. G. Ospennikova, and I. L. Svetlov, “Single-crystal nickel superalloys for advanced GTE turbine blades,” Aviats. Mater. Technol., No. S, 72–103 (2017). https://doi.org/10.18577/2071-9140-2017-0-S-72-103

  28. Fifth Generation Nickel Base Single Crystal Superalloy TMS-196 (NIMS and IHI, Tokyo, 2006). http://sakimori.nims.go.jp. Accessed February 10, 2019.

  29. K. Kawagishi, A. C. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, and H. Harada, “Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238,” in Proceedings of Superalloys 2012: 13th International Symposium on Superalloys (Minerals, Metals & Materials Society, Pennsylvania, 2012), pp. 189–195.

  30. G. I. Morozova, “Compensation of the disbalance of alloying of nickel superalloys,” Metalloved. Term. Obrab. Met., No. 12, 52–58 (2012).

  31. N. A. Nochovnaya, O. A. Bazyleva, D. E. Kablov, and P. V. Panin, Titanium- and Nickel-Based Intermetallic Alloys (VIAM, Moscow, 2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S.M. Prager and S.V. Shurtakov for their great contribution in writing the article.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Evgenov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kablov, E.N., Evgenov, A.G., Petrushin, N.V. et al. Next-Generation Materials and Digital Additive Technologies for the Production of Resource Parts in FGUP VIAM: IV. Development of Superalloys. Russ. Metall. 2023, 1879–1887 (2023). https://doi.org/10.1134/S0036029523120133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523120133

Keywords:

Navigation