Skip to main content

Kinetics of Damage Accumulation in a D16ch Alloy during Static Loading

Abstract

The kinetics of damage accumulation in a D16ch sheet aluminum alloy (Al–Cu–Mg system) at various stages of static loading is investigated using a combined technique, which includes the detection of acoustic emission (AE) signals, structural studies, and the determination of electrical resistance and an eddy-current parameter. The dependences of these characteristics on the relative strain demonstrate the presence of four stages of specimen fracture. Correlation exponential dependences of the electrical resistance and the eddy-current parameter on damage are obtained, and they can be used to diagnose the state of the material.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. A. Habibalahi, M. D. Moghari, K. Samadian, S. S. Mousavi, and M. S. Safizadeh, “Improving pulse eddy current and ultrasonic testing stress measurement accuracy using neural network data fusion,” IET Sci., Meas. Technol. 9 (4), 514–521 (2015).

    Google Scholar 

  2. I. Ozolinsh, I. Pavelko, V. Pavelko, M. Wevers, and H. Pfeiffer, “Some results of ultrasonic detection of uniform corrosion in thin Al2024-T3 sheets,” in Proceedings of EU Project Meeting on Aircraft Integrated Structural Health Assessment—AISHA (Leuven, 2007), Vol. 26.

  3. T. V. Tret’yakova, “Use of the Vic-3D software implementing the digital image correlation method for studying inelastic deformation fields,” Vychisl. Mekh. Sploshnykh Sred 7 (2), 162–171 (2014).

    Google Scholar 

  4. P. A. Vanniamparambil, U. Guclu, and A. Kontsos, “Identification of crack initiation in aluminum alloys using acoustic emission,” Exp. Mech. 55 (5), 837–850 (2015).

    Article  Google Scholar 

  5. D. L. Merson, E. V. Chernyaeva, and D. E. Meshche-ryakov, “Application of spectral analysis of acoustic emission signals to assess the state of grade 20 steel,” Deform. Razrushenie Mater., No. 1, 44–48 (2009).

  6. M. G. R. Sause, T. Müller, A. Horoschenkoff, and S. Horn, “Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis,” Composites Sci. Technol. 72 (2), 167–174 (2012).

    CAS  Article  Google Scholar 

  7. A. Vinogradov, D. Orlov, A. Danyuk, and Y. Estrin, “Effect of grain size on the mechanisms of plastic deformation in wrought Mg–Zn–Zr alloy revealed by acoustic emission measurements,” Acta Mater. 61 (6), 2044–2056 (2013).

    CAS  Article  Google Scholar 

  8. O. V. Bashkov and N. A. Semashko, “Acoustic emission during a change in the deformation mechanisms of plastic structural materials,” Fiz. Mezomekh. 7 (6), 59–62 (2004).

    CAS  Google Scholar 

  9. L. R. Botvina, M. R. Tyutin, A. I. Bolotnikov, and T. B. Petersen, “Effect of preliminary cycling on the acoustic emission characteristics of structural 15Kh2GMF steel,” Russ. Metall. (Metally), No. 1, 35–46 (2021).

  10. N. A. Zharkova, L. R. Botvina, and M. R. Tyutin, “Damage accumulation stages in a low-carbon steel during uniaxial tension,” Russ. Metall. (Metally), No. 3, 234–241 (2007).

  11. L. R. Botvina, M. R. Tyutin, T. B. Petersen, V. P. Levin, A. P. Soldatenkov, and D. V. Prosvirnin, “Residual strength, microhardness, and acoustic properties of cyclically deformed mild steel,” Probl. Mashinostr. Nadezhn. Mashin, No. 6, 44–53 (2018).

    Google Scholar 

  12. L. R. Botvina, M. R. Tyutin, T. B. Petersen, D. V. Prosvirnin, A. M. Morozov, and E. I. Kolokolov, “Residual strength of cyclically deformed corrosion-resistant steel,” Deform. Razrushenie Mater., No. 11, 37–48 (2019).

  13. L. R. Botvina, M. R. Tyutin, V. P. Levin, A. V. Ioffe, Yu. S. Perminova, and D. V. Prosvirnin, “Mechanical and physical properties, fracture mechanisms, and residual strength of 15Kh2GMF steel used for the manufacture of oil pumping rods,” Deform. Razrushenie Mater., No. 9, 22–34 (2020).

  14. L. R. Botvina, M. R. Tyutin, I. O. Sinev, and A. I. Bolotnikov, “The effect of preliminary cyclic loading on acoustic emission parameters and damage of structural steels,” Procedia Struct. Integrity 28, 2118–2125 (2020).

    Article  Google Scholar 

  15. L. R. Botvina, V. M. Kushnarenko, M. R. Tyutin, V. P. Levin, A. E. Morozov, and A. I. Bolotnikov, “Stages of fracture and the residual strength of pipe steel after long-term operation,” Fiz. Mezomekh. 24 (1), 50–61 (2021).

    Google Scholar 

  16. B. Wisner, M. Cabal, P. A. Vanniamparambil, J. Hochhalter, W. P. Leser, and A. Kontsos, “In situ microscopic investigation to validate acoustic emission monitoring,” Exp. Mech. 55 (9), 1705–1715 (2015).

    CAS  Article  Google Scholar 

  17. J. Lemaitre and R. Desmorat, Engineering Damage Mechanics. Ductile, Creep, Fatigue and Brittle Failures (Springer, 2005).

    Google Scholar 

  18. B. M. Darras, F. H. Abed, S. Pervaiz, and A. Abdu-Latif, “Analysis of damage in 5083 aluminum alloy deformed at different strain rates,” Mater. Sci. Eng., A 568, 143–149 (2013).

    CAS  Article  Google Scholar 

  19. F. H. Abed, A. K. Al-Tamimi, and R. M. Al-Himairee, “Characterization and modeling of ductile damage in structural steel at low and intermediate strain rates,” J. Eng. Mech. 138 (9), 1186–1194 (2012).

    Article  Google Scholar 

  20. S. N. Zhurkov, V. S. Kuksenko, and I. A. Slutsker, “Formation of submicroscopic cracks in polymers under load,” Fiz. Tverd. Tela 11 (2), 296–307 (1969).

    CAS  Google Scholar 

  21. V. V. Panasyuk, Limit Equilibrium of Brittle Bodies with Cracks (Naukova dumka, Kiev, 1968).

    Google Scholar 

  22. V. V. Panasyuk and B. L. Lozovi, “On the propagation of two cracks of differet lengths,” Dokl. Akad. Nauk USSR, No. 11, 1444–1447 (1962).

    Google Scholar 

  23. L. R. Botvina and T. B. Petersen, “On the analogy of acoustic and seismic regimes at various stages of fracture,” Dokl. Akad. Nauk 376, 331–334 (2001).

    CAS  Google Scholar 

  24. A. Carpinteri, G. Lacidogna, and S. Puzzi, “Chaos, solitons and fractals. From criticality to final collapse: evolution of the “b-value” from 1.5 to 1.0,” Chaos, Solitons and Fractals 41 (2), 843–853 (2009).

    Article  Google Scholar 

  25. L. M. Rybakova, “Mechanical regularities of metal fracture during volume and surface plastic deformation,” Probl. Mashinostr. Nadezhn. Mashin, No. 5, 113–123 (1998).

    Google Scholar 

  26. L. R. Botvina and M. R. Tyutin, “New acoustic parameter characterizing the loading history effects,” Eng. Fract. Mech. 210, 358–366 (2019).

    Article  Google Scholar 

  27. E. N. Beletsky, V. P. Levin, I. O. Sinev, L. R. Botvina, M. R. Tyutin, and A. V. Kulemin, “Evolution of the physical properties and damage assessment of the D16ChATV alloy,” AIP Conference Proceedings, 040006 (2020).

  28. D. F. Bell, Experimental Fundamentals of Mechanics of Deformable Solids. Part II. Finite Deformation (Nauka, Moscow, 1984).

    Google Scholar 

  29. L. R. Botvina, N. A. Zharkova, M. P. Tyutin, A. P. Soldatenkov, Yu. A. Demina, and V. P. Levin, “Development of plastic zones and damage at various types of loading,” Zavod. Lab. 79 (5), 46–55 (2013).

    Google Scholar 

  30. L. R. Botvina and A. P. Soldatenkov, “On the concentration criterion of fracture,” Metallofiz. Novye Tekhnol. 39 (4), 477–490 (2017).

    CAS  Article  Google Scholar 

  31. A. V. Makarov, E. S. Gorkunov, R. A. Savrai, L. Kh. Kogan, A. S. Yurovskikh, Yu. M. Kolobylin, I. Yu. Malygina, and N. A. Davydova, “Influence of combined deformation–thermal treatment on the electromagnetic control of fatigue degradation of quenched structural steel,” Defektoskopiya, No. 12, 22–40 (2013).

    Google Scholar 

  32. E. S. Gorkunov, R. A. Savrai, A. V. Makarov, L. Kh. Kogan, and S. A. Rogovaya, “Application of the eddy-current method to estimate the accumulated plastic deformation and the residual mechanical properties after cyclic loading of annealed medium-carbon steel,” Defektoskopiya, No. 4, 24–30 (2007).

    Google Scholar 

  33. B. G. Lifshits, V. S. Kraposhin, and Ya. L. Linetskii, Physical Properties of Metals and Alloys (Metallurgiya, Moscow, 1980).

    Google Scholar 

  34. L. M. Kachanov, Fundamentals of Fracture Mechanics (Nauka, Moscow, 1974).

    Google Scholar 

  35. Yu. N. Rabotnov, Introduction to Fracture Mechanics (Nauka, Moscow, 1987).

    Google Scholar 

  36. J. H. Liu, G. L. Li, G. Sh. Liu, and X. Y. Hao, “Damaged evaluation of ferrite ductile iron with electric resistance,” Mater. Lett. 58 (6), 1051–1055 (2004).

    CAS  Article  Google Scholar 

  37. J. Lemaitre and J. Dufailly, “Damage measurements,” Eng. Fract. Mech. 28 (5, 6), 643–661 (1987).

  38. R. Truell, Ch. Elbaum, and B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969).

    Google Scholar 

  39. V. V. Mishakin, F. M. Mitenkov, and V. A. Klyushnikov, “Use of an acoustic method to estimate the strength of 08Kh18N10T steel during fatigue failure,” Kontrol’. Diagnostika, No. 7, 9–13 (2012).

    Google Scholar 

  40. W. Song, C. Xu, Q. Pan, and J. Song, “Nondestructive testing and characterization of residual stress field using an ultrasonic method,” Chinese J. Mech. Eng. 29 (2), 365–371 (2016).

    CAS  Article  Google Scholar 

  41. S. Kenderian, T. P. Berndt, R. E. Green, and B. B. Djordjevic, “Ultrasonic monitoring of dislocations during fatigue of pearlitic rail steel,” Mater. Sci. Eng., A 348 (1, 2), 90–99 (2003).

  42. V. L. Busov, “Scattering of ultrasonic waves by microcracks in fragmented polycrystals,” Akustich. Vestn. 10 (3), 19–24 (2007).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00674.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Tyutin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tyutin, M.R., Botvina, L.R., Levin, V.P. et al. Kinetics of Damage Accumulation in a D16ch Alloy during Static Loading. Russ. Metall. 2022, 444–451 (2022). https://doi.org/10.1134/S0036029522040309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522040309

Keywords:

  • D16ch aluminum alloy
  • acoustic emission
  • damage, eddy-current control
  • electrical resistance
  • attenuation and velocity of ultrasonic waves
  • stages of fracture