A. Habibalahi, M. D. Moghari, K. Samadian, S. S. Mousavi, and M. S. Safizadeh, “Improving pulse eddy current and ultrasonic testing stress measurement accuracy using neural network data fusion,” IET Sci., Meas. Technol. 9 (4), 514–521 (2015).
Google Scholar
I. Ozolinsh, I. Pavelko, V. Pavelko, M. Wevers, and H. Pfeiffer, “Some results of ultrasonic detection of uniform corrosion in thin Al2024-T3 sheets,” in Proceedings of EU Project Meeting on Aircraft Integrated Structural Health Assessment—AISHA (Leuven, 2007), Vol. 26.
T. V. Tret’yakova, “Use of the Vic-3D software implementing the digital image correlation method for studying inelastic deformation fields,” Vychisl. Mekh. Sploshnykh Sred 7 (2), 162–171 (2014).
Google Scholar
P. A. Vanniamparambil, U. Guclu, and A. Kontsos, “Identification of crack initiation in aluminum alloys using acoustic emission,” Exp. Mech. 55 (5), 837–850 (2015).
Article
Google Scholar
D. L. Merson, E. V. Chernyaeva, and D. E. Meshche-ryakov, “Application of spectral analysis of acoustic emission signals to assess the state of grade 20 steel,” Deform. Razrushenie Mater., No. 1, 44–48 (2009).
M. G. R. Sause, T. Müller, A. Horoschenkoff, and S. Horn, “Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis,” Composites Sci. Technol. 72 (2), 167–174 (2012).
CAS
Article
Google Scholar
A. Vinogradov, D. Orlov, A. Danyuk, and Y. Estrin, “Effect of grain size on the mechanisms of plastic deformation in wrought Mg–Zn–Zr alloy revealed by acoustic emission measurements,” Acta Mater. 61 (6), 2044–2056 (2013).
CAS
Article
Google Scholar
O. V. Bashkov and N. A. Semashko, “Acoustic emission during a change in the deformation mechanisms of plastic structural materials,” Fiz. Mezomekh. 7 (6), 59–62 (2004).
CAS
Google Scholar
L. R. Botvina, M. R. Tyutin, A. I. Bolotnikov, and T. B. Petersen, “Effect of preliminary cycling on the acoustic emission characteristics of structural 15Kh2GMF steel,” Russ. Metall. (Metally), No. 1, 35–46 (2021).
N. A. Zharkova, L. R. Botvina, and M. R. Tyutin, “Damage accumulation stages in a low-carbon steel during uniaxial tension,” Russ. Metall. (Metally), No. 3, 234–241 (2007).
L. R. Botvina, M. R. Tyutin, T. B. Petersen, V. P. Levin, A. P. Soldatenkov, and D. V. Prosvirnin, “Residual strength, microhardness, and acoustic properties of cyclically deformed mild steel,” Probl. Mashinostr. Nadezhn. Mashin, No. 6, 44–53 (2018).
Google Scholar
L. R. Botvina, M. R. Tyutin, T. B. Petersen, D. V. Prosvirnin, A. M. Morozov, and E. I. Kolokolov, “Residual strength of cyclically deformed corrosion-resistant steel,” Deform. Razrushenie Mater., No. 11, 37–48 (2019).
L. R. Botvina, M. R. Tyutin, V. P. Levin, A. V. Ioffe, Yu. S. Perminova, and D. V. Prosvirnin, “Mechanical and physical properties, fracture mechanisms, and residual strength of 15Kh2GMF steel used for the manufacture of oil pumping rods,” Deform. Razrushenie Mater., No. 9, 22–34 (2020).
L. R. Botvina, M. R. Tyutin, I. O. Sinev, and A. I. Bolotnikov, “The effect of preliminary cyclic loading on acoustic emission parameters and damage of structural steels,” Procedia Struct. Integrity 28, 2118–2125 (2020).
Article
Google Scholar
L. R. Botvina, V. M. Kushnarenko, M. R. Tyutin, V. P. Levin, A. E. Morozov, and A. I. Bolotnikov, “Stages of fracture and the residual strength of pipe steel after long-term operation,” Fiz. Mezomekh. 24 (1), 50–61 (2021).
Google Scholar
B. Wisner, M. Cabal, P. A. Vanniamparambil, J. Hochhalter, W. P. Leser, and A. Kontsos, “In situ microscopic investigation to validate acoustic emission monitoring,” Exp. Mech. 55 (9), 1705–1715 (2015).
CAS
Article
Google Scholar
J. Lemaitre and R. Desmorat, Engineering Damage Mechanics. Ductile, Creep, Fatigue and Brittle Failures (Springer, 2005).
Google Scholar
B. M. Darras, F. H. Abed, S. Pervaiz, and A. Abdu-Latif, “Analysis of damage in 5083 aluminum alloy deformed at different strain rates,” Mater. Sci. Eng., A 568, 143–149 (2013).
CAS
Article
Google Scholar
F. H. Abed, A. K. Al-Tamimi, and R. M. Al-Himairee, “Characterization and modeling of ductile damage in structural steel at low and intermediate strain rates,” J. Eng. Mech. 138 (9), 1186–1194 (2012).
Article
Google Scholar
S. N. Zhurkov, V. S. Kuksenko, and I. A. Slutsker, “Formation of submicroscopic cracks in polymers under load,” Fiz. Tverd. Tela 11 (2), 296–307 (1969).
CAS
Google Scholar
V. V. Panasyuk, Limit Equilibrium of Brittle Bodies with Cracks (Naukova dumka, Kiev, 1968).
Google Scholar
V. V. Panasyuk and B. L. Lozovi, “On the propagation of two cracks of differet lengths,” Dokl. Akad. Nauk USSR, No. 11, 1444–1447 (1962).
Google Scholar
L. R. Botvina and T. B. Petersen, “On the analogy of acoustic and seismic regimes at various stages of fracture,” Dokl. Akad. Nauk 376, 331–334 (2001).
CAS
Google Scholar
A. Carpinteri, G. Lacidogna, and S. Puzzi, “Chaos, solitons and fractals. From criticality to final collapse: evolution of the “b-value” from 1.5 to 1.0,” Chaos, Solitons and Fractals 41 (2), 843–853 (2009).
Article
Google Scholar
L. M. Rybakova, “Mechanical regularities of metal fracture during volume and surface plastic deformation,” Probl. Mashinostr. Nadezhn. Mashin, No. 5, 113–123 (1998).
Google Scholar
L. R. Botvina and M. R. Tyutin, “New acoustic parameter characterizing the loading history effects,” Eng. Fract. Mech. 210, 358–366 (2019).
Article
Google Scholar
E. N. Beletsky, V. P. Levin, I. O. Sinev, L. R. Botvina, M. R. Tyutin, and A. V. Kulemin, “Evolution of the physical properties and damage assessment of the D16ChATV alloy,” AIP Conference Proceedings, 040006 (2020).
D. F. Bell, Experimental Fundamentals of Mechanics of Deformable Solids. Part II. Finite Deformation (Nauka, Moscow, 1984).
Google Scholar
L. R. Botvina, N. A. Zharkova, M. P. Tyutin, A. P. Soldatenkov, Yu. A. Demina, and V. P. Levin, “Development of plastic zones and damage at various types of loading,” Zavod. Lab. 79 (5), 46–55 (2013).
Google Scholar
L. R. Botvina and A. P. Soldatenkov, “On the concentration criterion of fracture,” Metallofiz. Novye Tekhnol. 39 (4), 477–490 (2017).
CAS
Article
Google Scholar
A. V. Makarov, E. S. Gorkunov, R. A. Savrai, L. Kh. Kogan, A. S. Yurovskikh, Yu. M. Kolobylin, I. Yu. Malygina, and N. A. Davydova, “Influence of combined deformation–thermal treatment on the electromagnetic control of fatigue degradation of quenched structural steel,” Defektoskopiya, No. 12, 22–40 (2013).
Google Scholar
E. S. Gorkunov, R. A. Savrai, A. V. Makarov, L. Kh. Kogan, and S. A. Rogovaya, “Application of the eddy-current method to estimate the accumulated plastic deformation and the residual mechanical properties after cyclic loading of annealed medium-carbon steel,” Defektoskopiya, No. 4, 24–30 (2007).
Google Scholar
B. G. Lifshits, V. S. Kraposhin, and Ya. L. Linetskii, Physical Properties of Metals and Alloys (Metallurgiya, Moscow, 1980).
Google Scholar
L. M. Kachanov, Fundamentals of Fracture Mechanics (Nauka, Moscow, 1974).
Google Scholar
Yu. N. Rabotnov, Introduction to Fracture Mechanics (Nauka, Moscow, 1987).
Google Scholar
J. H. Liu, G. L. Li, G. Sh. Liu, and X. Y. Hao, “Damaged evaluation of ferrite ductile iron with electric resistance,” Mater. Lett. 58 (6), 1051–1055 (2004).
CAS
Article
Google Scholar
J. Lemaitre and J. Dufailly, “Damage measurements,” Eng. Fract. Mech. 28 (5, 6), 643–661 (1987).
R. Truell, Ch. Elbaum, and B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969).
Google Scholar
V. V. Mishakin, F. M. Mitenkov, and V. A. Klyushnikov, “Use of an acoustic method to estimate the strength of 08Kh18N10T steel during fatigue failure,” Kontrol’. Diagnostika, No. 7, 9–13 (2012).
Google Scholar
W. Song, C. Xu, Q. Pan, and J. Song, “Nondestructive testing and characterization of residual stress field using an ultrasonic method,” Chinese J. Mech. Eng. 29 (2), 365–371 (2016).
CAS
Article
Google Scholar
S. Kenderian, T. P. Berndt, R. E. Green, and B. B. Djordjevic, “Ultrasonic monitoring of dislocations during fatigue of pearlitic rail steel,” Mater. Sci. Eng., A 348 (1, 2), 90–99 (2003).
V. L. Busov, “Scattering of ultrasonic waves by microcracks in fragmented polycrystals,” Akustich. Vestn. 10 (3), 19–24 (2007).
Google Scholar