Skip to main content
Log in

High-Temperature Response of the Carbon Phase Produced from Fullerenes under Pressure

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The properties (indentation hardness, elastic modulus, and elastic recovery) of reinforcing carbon particles obtained from fullerenes by synthesis of metal-matrix composite materials have been studied by high-temperature indentation at temperatures of up to 500°C. The high hardness (>30 GPa) and superelasticity (elastic recovery >80%) of the carbon phase in air are retained at temperatures up to 400°C and abruptly decrease at 500°C. After heating in air to 500°C, the graphitization of the particles is observed not only at the sample surface, but also, to a lesser extent, inside the sample, at a depth of >100 µm. The graphitization decreases friction coefficient of the CM samples from 0.16 to 0.11 and deteriorates their wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. D. Blank, S. G. Buga, G. A. Dubitsky, N. R., Serebryanaya, M. Yu. Popov, and B. Sundqvist, “High-pressure polymerized phases of C60,” Carbon 36, 319–343 (1998).

    Article  CAS  Google Scholar 

  2. V. V. Brazhkin and A. G. Lyapin, “Hard and superhard carbon phases synthesized from fullerites under pressure,” J. Superhard Mater. 34, 400–423 (2012).

    Article  Google Scholar 

  3. M. Alvarez-Murga and J. L. Hodeau, “Structural phase transitions of C60 under high-pressure and high-temperature, Carbon 82, 381–407 (2015).

    Article  CAS  Google Scholar 

  4. O. Chernogorova, E. Drozdova, I. Ovchinnikova, A. Soldatov, and E. Ekimov, “Structure and properties of superelastic hard carbon phase created in fullerenemetal composites by high temperature-high pressure treatment,” J. Appl. Phys. 111, 112601–112605 (2012).

    Article  Google Scholar 

  5. A. Leyland and A. Matthews, “Design criteria for wear-resistant nanostructured and glassy-metal coatings,” Surf. Coat. Technol. 177178, 317–324 (2004).

    Article  Google Scholar 

  6. S. Buga, V. Blank, A. Fransson, N. Serebryanaya, and B. Sundqvist, “DSC study of annealing and phase transformations of C60 and C70 polymerized under pressures in the range 9.5–13 GPa,” J. Phys. Chem. Solids 63, 331–343 (2002).

    Article  CAS  Google Scholar 

  7. H. Huck, E. B. Halac, M. Reinoso, A. G. Dall’Asén, A. Somoza, W. Deng, R. S. Brusa, G. P. Karwasz, and A. Zecca, “Microstructural analysis of carbon films obtained from C60 fullerene ion beams,” Appl. Surf. Sci. 211, 379–385 (2003).

    Article  CAS  Google Scholar 

  8. X. Deng, H. Kousaka, T. Tokoroyama, and N. Umehara, “Thermal stability and high-temperature tribological properties of aC:H and Si-DLC deposited by microwave sheath voltage combination plasma,” Tribology (Online) 8, 257–264 (2013).

    Article  Google Scholar 

  9. S. Anders, J. W. Ager, G. M. Pharr, T. Y. Tsui, and I. G. Brown, “Heat treatment of cathodic arc deposited amorphous hard carbon films,” Thin Solid Films 308309, 186–190 (1997).

    Article  Google Scholar 

  10. C. Jongwannasiri, X. Li, and S. Watanabe, “Improvement of thermal stability and tribological performance of diamond-like carbon composite thin films,” Mater. Sci. Appl. 4, 630–636 (2013).

    CAS  Google Scholar 

  11. A. P. Semenov, “Tribological properties and vacuum ionplasma methods of application of diamond and diamond-like coatings,” J. Frict. Wear. 30, 62–75 (2009).

    Article  Google Scholar 

  12. O. P. Chernogorova, E. I. Drozdova, I. N. Ushakova, S. I. Bulychev, E. A. Ekimov, V. Benavides, and A. V. Soldatov, “Indentation behaviour of superelastic hard carbon,” Philos. Mag. 96, 3451–3460 (2016).

    Article  CAS  Google Scholar 

  13. J. Robertson, “Diamond-like carbon,” Pure Appl. Chem. 66, 1789–1796 (1994).

    Article  CAS  Google Scholar 

  14. J. Ribeiro-Soares, M. Oliveros, C. Garin, M. David, L. Martins, C. Almeida, E. Martins-Ferreira, K. Takai, T. Enoki, R. Magalhaes-Paniago, A. Malachias, A. Jorio, B. Archanjo, C. Achete, and L. Canzado, “Structural analysis of polycrystalline graphene systems by Raman spectroscopy,” Carbon 95, 646–652 (2015).

    Article  CAS  Google Scholar 

  15. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61, 14095–14107 (2000).

    Article  CAS  Google Scholar 

  16. A. C. Ferrari and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B 64, 075414-1–075414-13 (2001).

    Article  Google Scholar 

  17. T. Evans and D. H. Sauter, “Etching of diamond surfaces with gases,” Philos. Mag. 6, 429–440 (1961).

    Article  CAS  Google Scholar 

  18. M. M. Khrushchov, in Modern technologies for modifying the surfaces of machine parts, Ed. by G. V. Moskvitin (LENAND, Moscow, 2013), pp. 78–113.

Download references

FUNDING

The work was carried out within the Governmental task 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Bannykh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannykh, O.A., Lukina, I.N., Drozdova, E.I. et al. High-Temperature Response of the Carbon Phase Produced from Fullerenes under Pressure. Russ. Metall. 2021, 1045–1050 (2021). https://doi.org/10.1134/S0036029521090032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521090032

Keywords:

Navigation