Skip to main content
Log in

Composite Membranes Based on Pd–Cu and Pd–Pb Solid Solutions

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Composite membranes with a thin selective layer based on the Pd–46 at % Cu or Pd–5 at % Pb solid solution on the surface of a bilayer heterostructure with two-level porosity in the form of Kh18N10T steel/nanoporous titanium oxide (steel/rutile) are fabricated. The structure of the selective 4-μm-thick layer is found to have no through pores, and a metal does not penetrate into the nanopores in titanium oxide. The selective layer in both versions has a fine submicrocrystalline granular structure, which is caused by the presence of a second component in the Pd–Pb layer and by a two-phase composition of the Pd–Cu layer. In the temperature range 200–300°C, the hydrogen permeability of the membrane based on the two-phase Pd–Cu solid solution is higher than the membrane based on the Pd–Pb solid solution by a factor of 1.7–2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. S. Burkhanov, N. B. Gorina, N. B. Kol’chugina, and N. R. Roshan, “Palladium alloys for hydrogen power engineering”, Ross. Khim. Zh. (Zh. Ross. Khim. Obshchestva) L (4), 36–40 (2006).

  2. A. Basile, E. Drioli, F. Santella, V. Violante, G. Capannelli, and G. Vitulli, “A study on catalytic membrane reactors for water gas shift reaction,” Gas Sep. Purif. 10 (1), 53 (1996).

    Article  Google Scholar 

  3. V. M. Ievlev, A. A. Maksimenko, A. I. Sitnikov, K. A. Solntsev, A. S. Chernyavskii, and A. I. Dontsov, “Composite metalloceramic heterostructure for deep hydrogen purification membranes,” Materialoved., No. 2, 37–40 (2016).

  4. V. N. Lapovok, V. I. Novikov, and L. I. Trusov, “Method of production of a filtering material,” RF Patent 2040371, 1995.

  5. V. I. Novikov, V. S. Vasil’kovskii, A. B. Sinyavin, and A. B. Petunin, “Method of production of a filtering material,” RF Patent 2424083, 2011.

  6. V. I. Novikov and E. M. Solov’ev, “Method of production of a filtering material,” RF Patent 2579713, 2016.

  7. V. S. Mitin, V. I. Novikov, A. I. Sharapaev, and A. G. Muradova, “Production of trilayer steel–TiO2–titanium composite membranes,” Membrany Membran. Tekhnol. 6 (3), 243–248 (2016).

    Google Scholar 

  8. A. Yu. Volkov and N. A. Kruglikov, “Effect of plastic deformation on the phase transformation kinetics in a Cu–47Pd alloy,” Fiz. Met. Metalloved. 105 (2), 215–224 (2008).

    Google Scholar 

  9. A. Yu. Volkov, O. S. Novikova, and V. D. Antonov, “Formation of an ordered structure in a Cu–49 at % Pd alloy,” Neorg. Mater. 48 (12), 1325–1330 (2012).

    Google Scholar 

  10. V. M. Ievlev, A. I. Dontsov, E. K. Belonogov, and K. A. Solntsev, “α \( \rightleftarrows \) β transformations in a Pd–57 at % Cu foil prepared by rolling,” Neorg. Mater. 53 (11), 1181–1188 (2017).

    Google Scholar 

  11. Hydrogen in Metals, Ed. by G. Alefeld and J. Völkl (Springer, Berlin, 1978), Vol. 1.

  12. S. V. Gorbunov, S. V. Kannykin, T. N. Penkina, N. R. Roshan, E. M. Chistov, and G. S. Burkhanov, “Palladium-lead alloys for the purification of hydrogen-containing gas mixtures and the separation of hydrogen from them,” Russian Metallurgy (Metally), No. 1, 54–59 (2017).

  13. V. M. Ievlev, K. A. Solntsev, A. A. Maksimenko, S. V. Kannykin, E. K. Belonogov, A. I. Dontsov, and N. R. Roshan “Formation of a thin foil of an ordered Pd–Cu solid solution with a CsCl-type lattice during magnetron sputtering,” Dokl. Akad. Nauk 457 (6), 676–680 (2014).

    Google Scholar 

  14. A. Van der Drift, “Evolutionary selection: a principle governing growth orientation in vapour-deposited layers,” Phil. Res. Rep. 22, 267–288 (1968).

    Google Scholar 

  15. Z. Nishiyama, “X-ray investigation of the mechanism of the transformation from face-centered cubic lattice to body-centered cubic,” Sci. Rep. Tohoku Imp. Univ. 23, 637–664 (1934).

    Google Scholar 

  16. G. Wassermann, “Influence of the α–γ transformation of an irreversible Ni steel onto crystal orientation and tensile strength,” Arch. Eisenhüttenwes B 16, S. 647 (1933).

  17. E. C. Bain, “The nature of martensite,” Trans. Amer. Inst. Min. Met. Eng. 70, 25–46 (1924).

    Google Scholar 

  18. V. M. Ievlev, K. A. Solntsev, A. A. Maksimenko, E. K. Belonogov, S. V. Kannykin, A. A. Sinel’nikov, and D. A. Sinetskaya, “Stabilization of the ordered structure in a thin condensed foil of a Pd–Cu solid solution in a hydrogen atmosphere,” Dokl. Akad. Nauk 460 (4), 422–426 (2015).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 4.7972.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Ievlev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ievlev, V.M., Dontsov, A.I., Novikov, V.I. et al. Composite Membranes Based on Pd–Cu and Pd–Pb Solid Solutions. Russ. Metall. 2018, 854–858 (2018). https://doi.org/10.1134/S0036029518090070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518090070

Keywords:

Navigation