Skip to main content
Log in

Effects of Structural Isomerism of Pyridine Monocarboxylic Acids on the Volume Properties of Their Buffer Solutions

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The intermolecular interactions of the structural isomers of pyridine monocarboxylic acid (PA, NA, INA) in aqueous buffer solutions were studied by densimetry over the temperature range from 288.15 to 313.15 K. The apparent molar volumes of picolinic (PA), nicotinic (NA), and isonicotinic (INA) acids in a buffer solution (pH 7.4) were determined from the experimental densities of solutions; the concentration dependences of the apparent molar volumes are linear. The partial molar volumes and expansibilities at infinite dilution, as well as their temperature derivatives, were determined. Their values suggest the destructive behavior of PyCOOH isomers in the buffer solutions. It was revealed that this effect on the structure of the buffer solution decreases in the series PA → NA → INA, the INA buffer solution being the best-structured system among the given solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. M. Kuz’menok and S. G. Mikhalenok, Organic Chemistry. Heterocyclic Compounds (BGTU, Minsk, 2015) [in Russian].

    Google Scholar 

  2. N. A. Tyukavkina, Yu. I. Baukov, and S. E. Zurabyan, Bioorganic Chemistry (GEOTAR-Media, Moscow, 2011) [in Russian].

  3. Organic Chemistry, The School-Book for Higher School, Ed. by V. P. Chernykh (NFaU, Kharkov, 2007) [in Russian].

  4. L. Lubicova and K. Waisser, Ces. Slov. Farm. 46, 99 (1997).

    Google Scholar 

  5. K. Westermark, H. Rensmo, A. C. Lees, J. G. Vos, and H. Siegbahn, J. Phys. Chem. B 106, 10108 (2002).

    Article  CAS  Google Scholar 

  6. D. R. M. Rao, N. Rawat, D. Manna, et al., J. Chem. Thermodyn. 58, 432 (2013).

    Article  Google Scholar 

  7. M. H. Abraham and W. E. Acree, Jr., J. Chem. Thermodyn. 61, 74 (2013).

    Article  CAS  Google Scholar 

  8. I. Seifriz, M. Konzen, M. M. S. Paula, et al., J. Inorg. Biochem. 76, 153 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. G. Ramesh and B. V. Reddy, J. Mol. Struct. 1160, 271 (2018).

    Article  CAS  Google Scholar 

  10. F. A. Al-Saif, J. Y. Al-Humaidi, D. N. Binjawhar, et al., J. Mol. Struct. 1218, 128547 (2020).

    Article  CAS  Google Scholar 

  11. G. Świderski, M. Kalinowska, A. Z. Wilczewska, et al., Polyhedron 150, 97 (2018).

    Article  Google Scholar 

  12. A. D. Marinković, S. Ž. Drmanić, B. Ž. Jovanović, et al., J. Serb. Chem. Soc. 70, 557 (2005).

    Google Scholar 

  13. D. R. M. Rao, N. Rawat, R. M. Sawant, et al., J. Chem. Thermodyn. 55, 67 (2012).

    Article  CAS  Google Scholar 

  14. G. A. Gamov, A. N. Kiselev, V. V. Alexsandriiskii, et al., J. Mol. Liq. 242, 1148 (2017).

    Article  CAS  Google Scholar 

  15. L. A. Ashton and J. Bullock, J. Chem. Soc., Faraday Trans. 1, 1177 (1982).

    Article  Google Scholar 

  16. P. Koczoń, J. Cz. Dobrowolski, W. Lewandowski, and A. P. Mazurek, J. Mol. Struct. 655, 89 (2003).

    Article  Google Scholar 

  17. F. Han and T. V. Chalikian, J. Am. Chem. Soc. 125, 7219 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. H. Kumar, M. Singla, and R. Jindal, J. Chem. Thermodyn. 70, 190 (2014).

    Article  CAS  Google Scholar 

  19. M. Taha and M.-J. Lee, J. Chem. Thermodyn. 41, 705 (2009).

    Article  CAS  Google Scholar 

  20. F. Franks, Water: A Comprehensive Treatise (Plenum, New York, 1973), Vol. 3.

    Google Scholar 

  21. R. W. Gurney, Ionic Processes in Solution (McGraw-Hill, New York, 1953).

    Google Scholar 

  22. L. G. Hepler, Can. J. Chem. 47, 4613 (1969).

    Article  CAS  Google Scholar 

  23. A. I. Lytkin, V. G. Badelin, O. N. Krutova, et al., Russ. J. Gen. Chem. 89, 2235 (2019).

    Article  CAS  Google Scholar 

  24. E. Yu. Tyunina, V. G. Badelin, and I. N. Mezhevoi, J. Chem. Thermodyn. 131, 40 (2019).

    Article  CAS  Google Scholar 

  25. V. P. Vasil’ev, V. A. Borodin, and E. V. Kozlovsky, Application of PC in Chemical Analytical Calculations (Vysshaya Shkola, Moscow, 1993) [in Russian].

    Google Scholar 

  26. A. N. Meshkov and G. A. Gamov, Talanta 198, 200 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. E. Yu. Tyunina, O. N. Krutova, A. I. Lytkin, et al., J. Chem. Thermodyn. 171, 106809 (2022).

    Article  CAS  Google Scholar 

  28. F. J. Millero and J. H. Knox, J. Chem. Eng. Data 18, 407 (1973).

    Article  CAS  Google Scholar 

  29. T. S. Banipal, H. Singh, P. K. Banipal, et al., Thermochim. Acta 553, 31 (2013).

    Article  CAS  Google Scholar 

  30. J. L. Liu, A. W. Hakin, and G. R. Hedwig, J. Chem. Thermodyn. 38, 1640 (2006).

    Article  CAS  Google Scholar 

  31. I. Banik and M. N. Roy, J. Mol. Liq. 169, 8 (2012).

    Article  CAS  Google Scholar 

  32. H. Kumar, Sheetal, and S. K. Sharma, J. Solution Chem. 45, 1 (2016).

    Article  CAS  Google Scholar 

  33. K. Dhal, S. Singh, and M. Talukdar, J. Mol. Liq. 361, 119578 (2022).

    Article  CAS  Google Scholar 

  34. N. Chakraborty, K. C. Juglan, and H. Kumar, J. Mol. Liq. 332, 115869 (2021).

    Article  CAS  Google Scholar 

  35. J. Gupta and A. K. Nain, J. Chem. Thermodyn. 144, 106067 (2020).

    Article  CAS  Google Scholar 

  36. E. V. Ivanov and E. Yu. Lebedeva, J. Mol. Liq. 310, 113134 (2020).

    Article  CAS  Google Scholar 

  37. O. Redlich and D. M. Meyer, Chem. Rev. 64, 221 (1964).

    Article  CAS  Google Scholar 

  38. D. O. Masson, Philos. Mag. 8, 218 (1929).

    Article  CAS  Google Scholar 

  39. R. A. Robinson and R. W. Green, J. Phys. Chem. 65, 1084 (1961).

    Article  CAS  Google Scholar 

  40. J. K. Dash, M. Sahu, M. Chakrabortty, et al., J. Mol. Liq. 84, 215 (2000).

    Article  CAS  Google Scholar 

  41. P. Patyar and G. Kaur, J. Solution Chem. 51, 58 (2022).

    Article  CAS  Google Scholar 

  42. B. S. Krumgal’ts and Yu. I. Gerzhberg, et al., Zh. Fiz. Khim. 45, 2352 (1971).

    Google Scholar 

  43. A. K. Nain and P. R. Neetu, J. Chem. Thermodyn. 64, 172 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The density measurements were carried out using the equipment of the “The Upper-Volga Regional Centre of Physicochemical Researches” (being located at the G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Science, Ivanovo, Russia; http://www.isc-ras.ru/ru/struktura/ckp).

Funding

This study was performed as part of fundamental scientific research on topic no. 122040500040-6 of the Russian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Tyunina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyunina, E.Y., Tarasova, G.N. Effects of Structural Isomerism of Pyridine Monocarboxylic Acids on the Volume Properties of Their Buffer Solutions. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S0036024424030324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036024424030324

Keywords:

Navigation