Skip to main content
Log in

Formation of a Single- and Two-Layer Solid Electrolyte by Electrophoresis on Anodic Substrates Metalized with Silver or Platinum

  • ELECTROCHEMISTRY. GENERATION AND STORAGE OF ENERGY FROM RENEWABLE SOURCES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of the possibilities of the electrophoretic deposition (EPD) of a single- and two-layer film electrolyte based on Ce0.8Sm0.2O1.9 (SDC) and BaCe0.8Sm0.19Cu0.01O3 (BCSCuO). The materials are deposited on a porous NiO–SDC anode substrate, which is relevant to the technology of creating solid oxide fuel cells. A new procedure is proposed for creating electrical conductivity by infiltrating an aqueous solution of silver nitrate into the porous structure of an anode substrate with subsequent centrifugation and annealing. The procedure is compared to metallizing an anode’s surface by applying a suspension of finely dispersed platinum powder. The dispersity of SDC and BCSCuO particles in aggregatively stable suspensions is studied to perform EPD. The effect adding iodine to a suspension of BCSCuO powder has on precipitation is shown. Metallizing an anode substrate with a silver layer can be considered a variant of EPD for single-layer electrolytes. The formation of a two-layer SDC/BCSCuO electrolyte is observed upon one metallizing of an anode substrate with a platinum layer. It is found that the conductivity of the SDC film on an anode substrate with a Pt sublayer is 17 mS/cm at a temperature of 700°С, with an energy of activation conductivity of 0.51 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. H. Su and Y. H. Hu, Chem. Eng. J. 402, 126235 (2020). https://doi.org/10.1016/j.cej.2020.126235

  2. M. F. Vostakola and B. A. Horri, Energies 14, 1280 (2021). https://doi.org/10.3390/en14051280

    Article  CAS  Google Scholar 

  3. X. V. Nguyen, C. T. Chang, G. B. Jung, et al., Renewable Energy 129, 806 (2018). https://doi.org/10.1016/j.renene.2017.03.070

    Article  CAS  Google Scholar 

  4. A. N. Koval’chuk, A. V. Kuz’min, D. A. Osinkin, et al., Russ. J. Electrochem. 54, 541 (2018). https://doi.org/10.1134/S1023193518060101

    Article  Google Scholar 

  5. M. Dewa, W. Yu, N. Dale, et al., Int. J. Hydrogen Energy 46, 33523 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.177

    Article  CAS  Google Scholar 

  6. T. T. Magkoev, Russ. J. Phys. Chem. A 95, 1081 (2021). https://doi.org/10.1134/S0036024421060182

    Article  CAS  Google Scholar 

  7. S.-L. Zhang, Y.-B. Shang, C.-X. Li, et al., Mater. Today Energy 21, 100815 (2021). https://doi.org/10.1016/j.mtener.2021.100815

  8. E. Yu. Pikalova and E. G. Kalinina, Int. J. Energy Prod. Manag. 4, 1 (2019). https://doi.org/10.2495/EQ-V4-N1-1-27

    Article  Google Scholar 

  9. E. G. Kalinina and E. Y. Pikalova, Russ. Chem. Rev. 88, 1179 (2019). https://doi.org/10.1070/RCR4889

    Article  CAS  Google Scholar 

  10. S. Hu, W. Li, H. Finklea, et al., Adv. Colloid Interface Sci. 276, 102102 (2020). https://doi.org/10.1016/j.cis.2020.102102

  11. E. G. Kalinina, N. M. Bogdanovich, D. I. Bronin, E. Yu. Pikalova, and A. A. Pankratov, Russ. J. Appl. Chem. 92, 191 (2019). https://doi.org/10.1134/S1070427219020046

    Article  CAS  Google Scholar 

  12. T. Ishihara, K. Shimose, T. Kudo, et al., J. Am. Ceram. Soc. 83, 1921 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01491.x

    Article  CAS  Google Scholar 

  13. E. G. Kalinina, E. Y. Pikalova, A. A. Kolchugin, et al., Solid State Ionics 302, 126 (2017). https://doi.org/10.1016/j.ssi.2017.01.016

    Article  CAS  Google Scholar 

  14. S. Ya. Istomin and E. V. Antipov, Russ. Chem. Rev. 82, 686 (2013). https://doi.org/10.1070/RC2013v082n07ABEH004390

    Article  CAS  Google Scholar 

  15. Z. Gao, L. V. Mogni, E. C. Miller, et al., Energy Environ. Sci. 9, 1602 (2016). https://doi.org/10.1039/C5EE03858H

    Article  CAS  Google Scholar 

  16. Z. Li, M. Li, and Z. Zhu, Electrochem. Energ. Rev. (2021). https://doi.org/10.1007/s41918-021-00098-3

  17. M. E. Chelmehsara and J. Mahmoudimehr, Int. J. Hydrogen Energy 43, 15521 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.114

    Article  CAS  Google Scholar 

  18. Yu. Liu, Z. Shao, T. Mori, et al., Mater. Rep.: Energy 1, 100003 (2021). https://doi.org/10.1016/j.matre.2020.11.002

  19. M. Li, B. Hua, J.-L. Luo, et al., J. Mater. Chem. A 3, 21609 (2015). https://doi.org/10.1039/C5TA06488K

    Article  CAS  Google Scholar 

  20. D. A. Osinkin, Electrochim. Acta 330, 135257 (2020). https://doi.org/10.1016/j.electacta.2019.135257

  21. M. S. Plekhanov, A. S. Lesnichyova, A. Y. Stroeva, et al., J. Solid State Electrochem. 23, 1389 (2019). https://doi.org/10.1007/s10008-019-04233-5

    Article  CAS  Google Scholar 

  22. E. Yu. Pikalova and E. G. Kalinina, Renewable Sustainable Energy Rev. 116, 109440 (2019). https://doi.org/10.1016/j.rser.2019.109440

  23. T. Hosomi, M. Matsuda, and M. Miyake, J. Eur. Ceram. Soc. 27, 173 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.175

    Article  CAS  Google Scholar 

  24. A. R. Boccaccini, J. H. Dickerson, B. Ferrari, et al., Key Eng. Mater. 654, 83 (2015). https://doi.org/10.4028/www.scientific.net/KEM.654.83

    Article  Google Scholar 

  25. D. Das and R. N. Basu, J. Am. Ceram. Soc. 97, 3452 (2014). https://doi.org/10.1111/jace.13163

    Article  CAS  Google Scholar 

  26. H. T. Suzuki, T. Uchikoshi, K. Kobayashi, et al., J. Ceram. Soc. Jpn. 117, 1246 (2009). https://doi.org/10.2109/jcersj2.117.1246

    Article  CAS  Google Scholar 

  27. J. Will, M. K. M. Hruschka, L. Gubler, et al., J. Am. Ceram. Soc. 84, 328 (2004). https://doi.org/10.1111/j.1151-2916.2001.tb00658.x

    Article  Google Scholar 

  28. O. E. Oskouyi, M. Shahmiri, A. Maghsoudipour, et al., J. Alloys Compd. 785, 220 (2019). https://doi.org/10.1016/j.jallcom.2019.01.166

    Article  CAS  Google Scholar 

  29. L. Besra, C. Compson, and M. Liu, J. Power Sources 173, 130 (2007). https://doi.org/10.1016/j.jpowsour.2007.04.061

    Article  CAS  Google Scholar 

  30. T. Ishihara, K. Sato, and Y. Takita, J. Am. Ceram. Soc. 79, 913 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08525.x

    Article  CAS  Google Scholar 

  31. Ab. A. Siti Alwani Binti, S. H. Amirnordin, H. Abd Rahman, et al., Adv. Mater. Res. 488–489, 1358 (2012). https://doi.org/10.4028/www.scientific.net/AMR.488-489.1358

  32. E. Kalinina, E. Pikalova, L. Ermakova, et al., Coatings 11, 805 (2021). https://doi.org/10.3390/coatings11070805

    Article  CAS  Google Scholar 

  33. S. Hu, W. Li, M. Yao, et al., Fuel Cells 17, 869 (2017). https://doi.org/10.1002/fuce.201700122

    Article  CAS  Google Scholar 

  34. H. Eba, C. Anzai, S. Ootsuka, et al., Mater. Trans. 59, 244 (2018). https://doi.org/10.2320/matertrans.M2017257

    Article  CAS  Google Scholar 

  35. E. G. Kalinina, E. Yu. Pikalova, and A. A. Kolchugin, Russ. J. Electrochem. 54, 723 (2018). https://doi.org/10.1134/S1023193518090045

    Article  CAS  Google Scholar 

  36. R. Zehbe, C. Mochales, D. Radzik, et al., J. Eur. Ceram. Soc. 36, 357 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.08.022

    Article  CAS  Google Scholar 

  37. M. Zarabian, Yazdan A. Yar, S. Vafaeenezhad, et al., J. Eur. Ceram. Soc. 33, 1815 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.01.032

    Article  CAS  Google Scholar 

  38. K. Ishii, C. Matsunaga, K. Kobayashi, et al., J. Eur. Ceram. Soc. 41, 2709 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.11.024

    Article  CAS  Google Scholar 

  39. D. Zhu, D.-B. Wang, T.-S. Song, et al., Biotechnol. Lett. 37, 101 (2015). https://doi.org/10.1007/s10529-014-1671-6

    Article  CAS  Google Scholar 

  40. S. U. Rehman, R.-H. Song, T.-H. Lim, et al., Ceram. Int. 47, 5570 (2021). https://doi.org/10.1016/j.ceramint.2020.10.141

    Article  CAS  Google Scholar 

  41. E. G. Kalinina and E. Yu. Pikalova, Materials 14, 5584 (2021). https://doi.org/10.3390/ma14195584

    Article  CAS  Google Scholar 

  42. M. Matsuda, M. Hashimoto, C. Matsunaga, et al., J. Eur. Ceram. Soc. 36, 4077 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.06.043

    Article  CAS  Google Scholar 

  43. E. G. Kalinina and E. Yu. Pikalova, Russ. J. Phys. Chem. A 95, 1942 (2021). https://doi.org/10.1134/S0036024421090077

    Article  CAS  Google Scholar 

  44. L. Dusoulier, R. Cloots, B. Vertruyen, et al., J. Eur. Ceram. Soc. 31, 1075 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.01.008

    Article  CAS  Google Scholar 

  45. D. A. Osinkin, N. M. Bogdanovich, S. M. Beresnev, et al., J. Power Sources 288, 20 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.098

    Article  CAS  Google Scholar 

  46. D. A. Osinkin and B. L. Kuzin, Electrochim. Acta 282, 128 (2018). https://doi.org/10.1016/j.electacta.2018.06.039

    Article  CAS  Google Scholar 

  47. T. H. Wan, M. Saccoccio, C. Chen, et al., Electrochim. Acta 184, 483 (2015). https://doi.org/10.1016/j.electacta.2015.09.097

    Article  CAS  Google Scholar 

  48. Z. Jamil, E. Ruiz-Trejo, and N. P. Brandon, J. Electrochem. Soc. 164, D210 (2017). https://doi.org/10.1149/2.1081704jes

    Article  CAS  Google Scholar 

  49. E. Y. Pikalova, V. G. Bamburov, A. A. Murashkina, A. D. Neuimin, A. K. Demin, and S. V. Plaksin, Russ. J. Electrochem. 47, 690 (2011). https://doi.org/10.1134/s1023193511060127

    Article  CAS  Google Scholar 

  50. A. Arabaci, Emerg. Mater. Res. 9, 296 (2020). https://doi.org/10.1680/jemmr.18.00082

    Article  Google Scholar 

  51. E. Yu. Pikalova, V. I. Maragou, A. N. Demina, et al., J. Power Sources 181, 199 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.003

    Article  CAS  Google Scholar 

  52. A. A. Kurteeva, S. M. Beresnev, D. A. Osinkin, et al., Russ. J. Electrochem. 47, 1381 (2011). https://doi.org/10.1134/S102319351112007X

    Article  CAS  Google Scholar 

  53. X. Wu, Y. Tian, J. Zhang, et al., J. Power Sources 301, 143 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.006

    Article  CAS  Google Scholar 

  54. S. Futamura, A. Muramoto, Y. Tachikawa, et al., Int. J. Hydrogen Energy 44, 8502 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.223

    Article  CAS  Google Scholar 

  55. D. Hirabayashi, A. Tomita, S. Teranishi, et al., Solid State Ionics 176, 881 (2005). https://doi.org/10.1016/j.ssi.2004.12.007

    Article  CAS  Google Scholar 

  56. Z. K. Ma, Z. Song, X. X. Wang, et al., ACS Appl. Energy Mater. 2, 3142 (2019). https://doi.org/10.1021/acsaem.8b02168

    Article  CAS  Google Scholar 

  57. X. X. Wang, T. Zhang, J. H. Kang, et al., Electrochim. Acta 248, 356 (2017). https://doi.org/10.1016/j.electacta.2017.07.130

    Article  CAS  Google Scholar 

  58. E. Yu. Pikalova and E. G. Kalinina, Russ. Chem. Rev. 90, 703 (2021). https://doi.org/10.1070/RCR4966

    Article  Google Scholar 

  59. J. Li, C. Wang, X. Wang, et al., Electrochem. Commun. 112, 106672 (2020). https://doi.org/10.1016/j.elecom.2020.106672

  60. M. Ananyev, D. Medvedev, A. Gavrilyuk, et al., Electrochim. Acta 125, 371 (2014). https://doi.org/10.1016/j.electacta.2013.12.161

    Article  CAS  Google Scholar 

  61. E. G. Kalinina, E. Y. Pikalova, A. A. Kolchugin, et al., Materials 12, 2545 (2019). https://doi.org/10.3390/ma12162545

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to researcher L.V. Ermakova at the Institute of Solid State Chemistry for performing our microstructural studies, researcher K.S. Shubin at the Institute of High-Temperature Electrochemistry for performing our electrical studies properties, and researcher A.A. Kol’chugin at the Institute of High-Temperature Electrochemistry for helping to interpret our impedance spectroscopy data. Part of this work was performed on equipment at the shared resource centers of the Institute of High-Temperature Electrochemistry, the Institute of Electrophysics, and the Institute of Solid State Chemistry.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00151. Our study of the properties of suspensions based on powder materials was performed a part of a State Task for the Institute of Electrophysics, topic no. 122011200363-9. An in-depth DRT analysis of the spectra was performed as part of a State Task for the Institute of High-Temperature Electrochemistry, topic no. 122020100324-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kalinina.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.G., Pikalova, E.Y. Formation of a Single- and Two-Layer Solid Electrolyte by Electrophoresis on Anodic Substrates Metalized with Silver or Platinum. Russ. J. Phys. Chem. 96, 2763–2773 (2022). https://doi.org/10.1134/S0036024422120147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422120147

Keywords:

Navigation