Skip to main content
Log in

Enthalpy–Entropy Compensation in Reactions of Oxirane Ring Opening

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Results are summarized from a systematic study of the enthalpy–entropy compensation effect in non-catalytic and pyridine-catalyzed reactions of aryloxiranes with organic acids of various classes. This effect is observed in isoparametric (isokinetic, isoenergetic) reaction series, due to the interaction (nonadditivity) of the joint effects of temperature and structure. Experimental evidence of its physical reality in a number of cross reaction series is considered. In the context of the compensation effect, there are transitions from one state of reaction systems in which the enthalpy term of the free activation energy acquires a zero value (∆H = 0, ∆G = −TΔS) to another in which the contribution to the free energy of activation of the entropy term disappears (ΔS = 0, ∆G = ΔH). The character of activation processes when there is no enthalpy–entropy compensation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. R. Wells, Chem. Rev. 63, 171 (1963). https://doi.org/10.1021/cr60222a005

    Article  CAS  Google Scholar 

  2. N. Chapman and J. Shorter, Advances in Linear Free Energy Relationships (Plenum, New York, 1972). https://doi.org/10.1007/978-1-4615-8660-9

    Book  Google Scholar 

  3. C. D. Johnson, The Hammett Equation, Cambridge Texts in Chemistry and Biochemistry (Cambridge Univ. Press, Cambridge, 1980).

    Google Scholar 

  4. V. A. Pal’m, Fundamentals of the Quantitative Theory of Organic Reactions (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  5. N. B. Chapman and J. Shorter, Correlation Analysis: Recent Advances (Plenum, New York, 1978). https://doi.org/10.1007/978-1-4615-8831-3

    Book  Google Scholar 

  6. J. Shorter, Correlation Analysis of Organic Reactivity, with Particular Reference to Multiple Regression (Wiley, Somerset, NJ, 1982).

    Google Scholar 

  7. C. Reinhardt, Solvents and Solvents Effects in Organic Chemistry (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  8. A. Williams, Free Energy Relationships in Organic and Bioorganic Chemistry (RSC, Cambridge, 2003). https://doi.org/10.1039/9781847550927

    Book  Google Scholar 

  9. V. A. Pal’m and B. I. Istomin, Reakts. Spos. Org. Soedin. 6, 427 (1969).

    Google Scholar 

  10. I. V. Shpanko, S. I. Kim, H. J. Koh, and I. Lee, Bull. Korean Chem. Soc. 16, 533 (1995).

    CAS  Google Scholar 

  11. I. V. Shpan’ko, Theor. Exp. Chem. 35, 63 (1999).

    Article  Google Scholar 

  12. I. V. Shpan’ko, Theor. Exp. Chem. 37, 265 (2001).

    Article  Google Scholar 

  13. J. E. Leffler and E. Grunwald, Rates and Equilibrium of Organic Reactions (Wiley, New York, 1963).

    Google Scholar 

  14. O. Exner, Prog. Phys. Org. Chem. 10, 411 (1973).

    CAS  Google Scholar 

  15. L. Liu and Q.-X. Guo, Chem. Rev. 101, 673 (2001). https://doi.org/10.1021/cr990416z

    Article  PubMed  CAS  Google Scholar 

  16. K. Sharp, Protein Sci. 10, 661 (2001). https://doi.org/10.1110/ps.37801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. J. Norwisz and T. J. Musielak, Therm. Anal. Calorim. 88, 751 (2007). https://doi.org/10.1007/s10973-006-8139-4

    Article  CAS  Google Scholar 

  18. P. J. Barrie, Phys. Chem. Chem. Phys. 14, 327 (2012). https://doi.org/10.1039/c1cp22667c

    Article  PubMed  CAS  Google Scholar 

  19. A. Cornish-Bowden, J. Biosci. 42, 665 (2017). https://doi.org/10.1007/s12038-017-9719-0

    Article  PubMed  CAS  Google Scholar 

  20. A. Mianowski, T. Radko, and T. Siudyga, React. Kinet. Mech. Catal. 132, 37 (2021). https://doi.org/10.1007/s11144-020-01898-2

    Article  CAS  Google Scholar 

  21. V. N. Sapunov, E. A. Saveljev, M. S. Voronov, M. Valtiner, and W. Linert, Thermo 1, 45 (2021). https://doi.org/10.3390/thermo1010004

    Article  Google Scholar 

  22. G. F. Dvorko, N. E. Ponomarev, and E. A. Ponomareva, Russ. J. Gen. Chem. 80, 1 (2010). https://doi.org/10.1134/S1070363210010019

    Article  CAS  Google Scholar 

  23. I. V. Shpan’ko, I. V. Sadovaya, and A. M. Kitai-gorodskii, Theor. Exp. Chem. 36, 338 (2000). https://doi.org/10.1023/A:1005272628953

    Article  Google Scholar 

  24. I. V. Shpan’ko and I. V. Sadovaya, Theor. Exp. Chem. 46, 176 (2010). https://doi.org/10.1007/s11237-010-9136-z

    Article  CAS  Google Scholar 

  25. I. V. Shpan’ko and I. V. Sadovaya, Russ. J. Phys. Chem. A 90, 2332 (2016). https://doi.org/10.1134/S0036024416120268

    Article  CAS  Google Scholar 

  26. I. V. Shpan’ko and I. V. Sadovaya, Russ. J. Gen. Chem. 87, 2552 (2017). https://doi.org/10.1134/S107036321711007X

    Article  Google Scholar 

  27. I. V. Shpan’ko and I. V. Sadovaya, React. Kinet. Mech. Catal. 123, 473 (2018). https://doi.org/10.1007/s11144-017-1340-6

    Article  CAS  Google Scholar 

  28. I. V. Shpan’ko, I. V. Sadovaya, and A. M. Kitai-gorodskii, Ukr. Khim. Zh. 69 (6), 111 (2003).

    Google Scholar 

  29. I. V. Shpan’ko and I. V. Sadovaya, Russ. J. Org. Chem. 41, 989 (2005).

    Article  Google Scholar 

  30. I. V. Shpan’ko and I. V. Sadovaya, Ukr. Khim. Zh. 70 (4), 104 (2004).

    Google Scholar 

  31. I. V. Shpan’ko and I. V. Sadovaya, Ukr. Khim. Zh. 81 (10), 124 (2015).

    Google Scholar 

  32. I. V. Shpan’ko and I. V. Sadovaya, Kinet. Catal. 55, 56 (2014). https://doi.org/10.1134/S002315841401011X

    Article  CAS  Google Scholar 

  33. I. V. Shpanko and I. V. Sadovaya, Russ. J. Gen. Chem. 89, 2358 (2019). https://doi.org/10.1134/S1070363219120053

    Article  CAS  Google Scholar 

  34. I. V. Shpan’ko and I. V. Sadovaya, Russ. J. Phys. Chem. A 87, 1955 (2013). https://doi.org/10.1134/S0036024413120224

    Article  CAS  Google Scholar 

  35. I. V. Shpan’ko, I. V. Sadovaya, and N. V. Kulikova, Russ. J. Org. Chem. 47, 687 (2011). https://doi.org/10.1134/S107042801105006X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shpanko.

Ethics declarations

The authors declare they have no conflict of interests.

Additional information

Translated by A. Bulaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpanko, I.V., Sadovaya, I.V. Enthalpy–Entropy Compensation in Reactions of Oxirane Ring Opening. Russ. J. Phys. Chem. 96, 2307–2317 (2022). https://doi.org/10.1134/S0036024422110309

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110309

Keywords:

Navigation