Skip to main content
Log in

Ru(III) Catalyzed Oxidation of Menthol by Bromate in Presence of Mercuric Acetate in Aqueous Acidic Medium: A Kinetic and Mechanistic Pathway

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetic investigation of Ru(III) catalyzed oxidation of menthol in an acidified solution of potassium bromate in the presence of Hg(OAc)2 as a scavenger of bromine intermediate has been studied. The reaction exhibits zero order kinetics with respect to KBrO3. While first order kinetics with respect to menthol and Ru(III) respectively. Hydrogen ion does not affect the rate but rate is enhanced by ionic strength. The influence of Hg(OAc)2 on the rate was found to be insignificant. Menthone as the oxidation product of menthol has been confirmed spectrally. The proposed mechanism involves slow and rate-controlling disproportionate of a transient complex formed between reactive species of Ru(III) and menthol. The various activation parameter such as energy of activation (∆E)#, Arrhenius factor (A), and entropy of activation (∆S)# were calculated. The rate law derived on the basis of experimental data corresponds well with the proposed mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. C. Sullivan and R. C. Thompson, Inorg. Chem. 18, 2375 (1979).

    Article  CAS  Google Scholar 

  2. P. Herbine and R. J. Field, J. Phys. Chem. 84, 1330 (1980).

    Article  CAS  Google Scholar 

  3. M. Orbaw, F. Dc. Kepper, and I. R. Epstein, J. Am. Chem. Soc. 104, 1657 (1982).

    Google Scholar 

  4. S. B. Jonnalagadda, N. M. Munkombove, P. Hensman, and T. Mushinga, Int. J. Chem. Kinet. 23, 113 (1991).

    Article  CAS  Google Scholar 

  5. S. B. Jonnalagadda, Anal. Chem. 55, 2253 (1983).

    Article  CAS  Google Scholar 

  6. L. Farkas, B. Perlmutter, and O. Sehachter, J. Am. Chem. Soc. 71, 2833 (1949).

    Article  CAS  Google Scholar 

  7. B. F. Mirjalil, M. A. Zolfigol, A. Bamoniri, et al., Acta Chim. Slov. 50, 563 (2003).

    Google Scholar 

  8. L. Farkas and O. Schachter, J. Am. Chem. Soc. 71, 2827 (1949).

    Article  CAS  Google Scholar 

  9. S. Kajigaeshi, T. Nakagawa, N. Nagasaki, et al., Bull. Chem. Soc. Jpn. 59, 747 (1986).

    Article  CAS  Google Scholar 

  10. A. Behr and K. Eustweweicmann, J. Organomet. Chem. 40, 3209 (1995).

    Google Scholar 

  11. H. Tomioka, K. Oshima, and H. Nozaki, Tetrahedron Lett. 25, 539 (1982).

    Article  Google Scholar 

  12. S. Kanemoto, H. Tomioka, K. Oshima, and H. Nozaki, Bull. Chem. Soc. Jpn. 59, 105 (1986).

    Article  CAS  Google Scholar 

  13. Y. Yamamoto, H. Sujuki, and Y. Mora-oka, Tetrahedron Lett. 26, 2107 (1985).

    Article  CAS  Google Scholar 

  14. K. Takase, H. Masuda, O. Kai, et al., Chem. Lett., 871 (1995).

  15. A. Banerjee, S. Dutt, D. Sengupta, et al., J. Ind. Chem. Soc. 60, 275 (1983).

    CAS  Google Scholar 

  16. L. Metsger and S. Binner, Tetrahedron Lett. 56, 1905 (2000).

    Article  CAS  Google Scholar 

  17. T. L. Ho, Synth. Commun. 9, 237 (1979).

    Article  CAS  Google Scholar 

  18. A. Banerjee, G. C. Banerjee, S. Bhattacharya, et al., J. Ind. Chem. Soc. 58, 605 (1981).

    CAS  Google Scholar 

  19. M. M. Adak, G. C. Banerjee, and A. Banerjee, J. Ind. Chem. Soc. 62, 224 (1985).

    CAS  Google Scholar 

  20. E. S. Amis, G. Nolen, and A. Indelli, J. Am. Chem. Soc. 82, 3233 (1960).

    Article  Google Scholar 

  21. S. B. Jonnalagadda, N. M. Munkombwe, P. Hensman, and T. Mushinga, Int. J. Chem. Kinet. 23, 113 (2004).

    Article  Google Scholar 

  22. G. Singh, R. Sailani, C. L. Khandelwal, and P. D. Sharma, Int. J. Curr. Chem. 2, 45 (2011).

    CAS  Google Scholar 

  23. R. Sailani, D. Pareek, N. K. Soni, et al., Curr. Phys. Chem. 4, 290 (2014).

    Article  CAS  Google Scholar 

  24. P. Sharma, R. Sailani, A. Meena, and C. L. Khandelwal, J. Chem. Res. 44, 295 (2020).

    Article  CAS  Google Scholar 

  25. G. Singh, P. Jain, R. Sailani, et al., J. Ind. Chem. Soc. 87, 817 (2010).

    Google Scholar 

  26. S. Hemkar, R. Sailani, C. L. Khandelwal, and P. D. Sharma, J. Ind. Chem. Soc. 89, 513 (2012).

    Google Scholar 

  27. S. Hemkar, P. Sharma, C. L. Khandelwal, and P. D. Sharma, J. Korean Chem. Soc. 56, 28 (2012).

    Article  Google Scholar 

  28. R. Sailani, M. Sharma, D. Pareek, et al., React. Kinet. Mech. Catal. 105, 249 (2012).

    Article  CAS  Google Scholar 

  29. R. Sailani, D. Pareek, A. Meena, et al., Int. J. Chem. Sci. 16, 1 (2018).

    Google Scholar 

  30. M. Latshaw, J. Am. Chem. Soc. 47, 793 (1925).

    Article  CAS  Google Scholar 

  31. R. Natrajan and M. Venkatasubramanian, Tetrahedron Lett. 10, 5021 (1969);

    Article  Google Scholar 

  32. Tetrahedron 30, 2785 (1974).

  33. P. N. Char, S. Sondu, B. Sethuram, and T. N. Rao, Ind. J. Chem. A 27, 31 (1988).

    Google Scholar 

  34. N. Krishna Murthy, Ch. S. Reddy, and E. V. Sundaram, Ind. J. Chem. A 28, 288 (1989).

    Google Scholar 

  35. Ch. S. Reddy, Collect. Czeeh. Chem. Commun. 53, 3138 (1988).

    Article  CAS  Google Scholar 

  36. S. B. Jonnalagadda, R. H. Simoyi, and G. K. Muthakia, J. Chem. Soc. Perkin Trans. 2, 1111 (1988).

    Article  Google Scholar 

  37. J. C. Bailar, The Chemistry of Co-ordination Compounds (Reinhold, New York, 1966), p. 4; E. Koros and M. Varga, J. Phys. Chem. 88, 4116 (1984);

    Google Scholar 

  38. M. Varga, L. Gyorgyi, and E. Koros, J. Phys. Chem. 89, 1019 (1985).

    Article  CAS  Google Scholar 

  39. N. Kumiya, S. Nuji, and S. Murahashi, Chem. Commun., 65 (2001).

  40. A. E. Mucientes, R. E. Gabaldon, F. J. Poblete, and S. Villarreal, J. Phys. Org. Chem. 17, 236 (2004).

    Article  CAS  Google Scholar 

  41. S. B. Jonnelagadda, M. Shezi, and B. Pare, Int. J. Chem. Kinet. 35, 294 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Acknowledgment is extended to the co-authors and Head of the Department of Chemistry, University of Rajasthan Jaipur (Rajasthan India). Authors would like to dedicate this work to Prof. (Late) P. D. Sharma, Department of Chemistry, University of Rajasthan, Jaipur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riya Sailani.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, P., Rolaniya, A. & Sailani, R. Ru(III) Catalyzed Oxidation of Menthol by Bromate in Presence of Mercuric Acetate in Aqueous Acidic Medium: A Kinetic and Mechanistic Pathway. Russ. J. Phys. Chem. 96, 2381–2386 (2022). https://doi.org/10.1134/S0036024422110255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110255

Keywords:

Navigation