Skip to main content
Log in

Investigation of N–H⋅⋅⋅H–M Dihydrogen Bonded Interactions in Adenine, Cytosine, Guanine, and Thymine with H–M (M = Li and Na) Complexes: A DFT Study

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this work, we have investigated the dihydrogen bond interaction of adenine, cytosine, guanine and thymine with H–M (M = Li and Na) complexes to reveal the nature of N–H⋅⋅⋅H–M type using density functional theory (DFT). The structural parameters illustrate that the thymine⋅⋅⋅H–Li complex has the smallest dihydrogen bond distance while the analysis of infrared vibrational frequencies confirmed that all the considered structures belong to true local minima. The natural bond orbital (NBO) analysis was done to evaluate the charge delocalization in intermolecular donor-acceptor interaction for all the complexes. The quantum theory of atom in molecule (QTAIM) and non-covalent interaction (NCI)-reduced density gradient (RDG) approaches were used to describe the nature of interaction. Along with molecular electrostatic potential (MEP), we have also studied Mulliken population analysis to explore the existence of dihydrogen bonded interactions. Besides, localized molecular orbital-energy decomposition analysis (LMO-EDA) was also employed to comprehend the dominant energy components and the nature of H⋅⋅⋅H interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Q. Li, X. Dong, X. An, B. Gong, and J. Cheng, J. Comput. Chem. 6, 776 (2009).

    CAS  Google Scholar 

  2. P. D. Duraisamy, P. Gopalan, and A. Angamuthu, Monatsh. Chem. 151, 1569 (2020).

    Article  CAS  Google Scholar 

  3. A. Allouche, J. Comput. Chem. 32, 174 (2012).

    Article  Google Scholar 

  4. A. H. Pakiari and A. Mohajeri, J. Mol. Struct.: THEOCHEM 620, 31 (2003).

    Article  CAS  Google Scholar 

  5. Y. Yang, Y. Liu, D. Yang, H. Li, and J. Sun, Phys. Chem. Chem. Phys. 17, 32132 (2015).

    Article  CAS  Google Scholar 

  6. V. I. Bakhmutov, Dihydrogen Bonds: Principles, Experiments, and Applications (Wiley, New York, 2007).

    Google Scholar 

  7. G. N. Patwari, T. Ebata, and N. Mikami, J. Chem. Phys. 116, 6056 (2002).

    Article  Google Scholar 

  8. S. J. Grabowski, Chem. Phys. Lett. 327, 203 (2000).

    Article  CAS  Google Scholar 

  9. A. H. Pakiari and Z. Jamshidi, J. Mol. Struct.: THEOCHEM 685, 155 (2004).

    Article  CAS  Google Scholar 

  10. A. Singh, D. K. Sahoo, S. K. Sethi, et al., Chem. Phys. Chem. 18, 3625 (2017).

    Article  CAS  Google Scholar 

  11. J. Fanfrlík, M. Lepšík, D. Horinek, et al., Chem. Phys. Chem. 7, 1100 (2006).

    Article  Google Scholar 

  12. N. V. Belkova, L. M. Epstein, O. A. Filippov, and E. S. Shubina, Chem. Rev. 116, 8545 (2016).

    Article  CAS  Google Scholar 

  13. R. Custelcean and J. E. Jackson, Chem. Rev. 101, 1963 (2001).

    Article  CAS  Google Scholar 

  14. B. G. de Oliveira, Phys. Chem. Chem. Phys. 15, 37 (2013).

    Article  Google Scholar 

  15. Y. Marechal, The Hydrogen Bond and the Water Molecule (Elsevier, Amsterdam, 2007).

    Google Scholar 

  16. N. Špačková, I. Berger, and J. Šponer, J. Am. Chem. Soc. 123, 3295 (2001).

    Article  Google Scholar 

  17. O. A. Stasyuk, M. Solà, M. Swart, et al., Chem. Phys. Chem. 21, 2112 (2020).

    Article  CAS  Google Scholar 

  18. K. J. Koch, T. Aggerholm, S. C. Nanita, and R. G. Cooks, J. Mass Spectrom. 37, 676 (2002).

    Article  CAS  Google Scholar 

  19. M. T. Rodgers and P. B. Armentrout, J. Am. Chem. Soc. 122, 8548 (2000).

    Article  CAS  Google Scholar 

  20. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  21. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  22. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  23. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  24. A. N. Isaev, Russ. J. Phys. Chem. A 90, 601 (2016).

    Article  CAS  Google Scholar 

  25. Siyamak Shahab, M. Sheikhi, L. Filippovich, et al., Russ. J. Phys. Chem. A 94, 1848 (2020).

    Article  Google Scholar 

  26. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  Google Scholar 

  27. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).

    Article  CAS  Google Scholar 

  28. C. E. Dykstra, G. Frenking, K. S. Kim, and G. E. Scuseria, Theory Appl. Comput. Chem., 1185 (2005).

  29. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  30. M. J. Frisch et al., Gaussian 09, Revision B.1 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  31. ChemCraft, Vers. 1.8. http://www.chemcraftprog.com.

  32. P. D. Duraisamy, P. Gopalan, and A. Angamuthu, Chem. Pap. 74, 1609 (2020).

    Article  CAS  Google Scholar 

  33. K. Verma and K. S. Viswanathan, Phys. Chem. Chem. Phys. 19, 19067 (2017).

    Article  CAS  Google Scholar 

  34. B. G. Oliveira, Comput. Theor. Chem. 998, 173 (2012).

    Article  CAS  Google Scholar 

  35. M. Prabhaharan, A. R. Prabakaran, S. Srinivasan, and S. Gunasekaran, Spectrochim. Acta, Part A 127, 454 (2014).

    Article  CAS  Google Scholar 

  36. S. J. Grabowski, W. A. Sokalski and J. Leszczynski, Chem. Phys. Lett. 432, 33 (2006).

    Article  CAS  Google Scholar 

  37. S. J. Grabowski, J. Phys. Chem. A 111, 3387 (2007).

    Article  CAS  Google Scholar 

  38. N. S. Venkataramanan, A. Suvitha, and Y. Kawazoe, J. Mol. Liq. 260, 18 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully thankful to “Bioinformatics resources and applications facility (BRAF), C-DAC, Pune” for providing the computational facilities for this work. Also, acknowledge the offering workstation from Computer Technology Centre (CTC) at KITS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abiram Angamuthu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraisamy, P., Gopalan, P. & Angamuthu, A. Investigation of N–H⋅⋅⋅H–M Dihydrogen Bonded Interactions in Adenine, Cytosine, Guanine, and Thymine with H–M (M = Li and Na) Complexes: A DFT Study. Russ. J. Phys. Chem. 96, 1258–1267 (2022). https://doi.org/10.1134/S0036024422060176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422060176

Keywords:

Navigation