Skip to main content
Log in

Heat Capacity, Thermodynamic Functions, and the Glass Transition of Butyl Methacrylate–Methacrylic Acid Copolymers

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The heat capacities of four samples of butyl methacrylate–methacrylic acid copolymers with 7.6 to 37.3 mol % acid are measured in the temperature range of 6 (80)–330 K. The thermodynamic characteristics (enthalpy, entropy, and Gibbs function) of the above copolymers are calculated. The isotherms of thermodynamic functions in the studied range of temperatures and copolymer compositions are plotted and analyzed. The ordering of the system (the entropy factor), rather than the energy of intermolecular interaction (the enthalpy factor), is found to make the main contribution to the change in the Gibbs function. BMA–MAA copolymer with 7.6 mol % acid is shown to be the best for use as a matrix for transdermal administration of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Artificial Organs, Ed. by V. I. Shumakov (Meditsina, Moscow, 1990) [in Russian].

    Google Scholar 

  2. Biocompatibility, Ed. by V. I. Sevast’yanov (Inform. Tsentr VNIIgeosistem, Moscow, 1999) [in Russian].

  3. Progress in Biomedical Polymers, Ed. by C. G. Gebelein and R. L. Dunn (Springer, New York, 2013).

    Google Scholar 

  4. V. Uryash, S. Chuprova, and N. Kokurina, Thermodynamics and Thermal Analysis of Plasticized Copolymers Butyl Methacrylate with Methacrylic Acid, a Binder for Transdermal Therapeutic Systems (LAP Lambert Academic, Saarbrücken, 2021).

    Google Scholar 

  5. N. A. Plate and A. E. Vasil’ev, Vysokomol. Soedin. A 24, 675 (1982).

    CAS  Google Scholar 

  6. V. I. Sevast’yanov, L. A. Solomatina, A. A. Tikhobaeva, et al., Perspekt. Mater., No. 1, 46 (2004).

  7. V. I. Sevast’yanov, L. A. Salomatina, N. V. Yakovleva, et al., Med. Tekh., No. 2, 3 (2000).

  8. V. I. Shumakov, L. A. Salomatina, N. V. Yakovleva, et al., Vestn. Transplantol. Iskusstv. Organ., No. 4, 33 (1999).

  9. M. I. Shtilman, Polymer Sci., Ser. A 52, 884 (2010).

    Article  Google Scholar 

  10. A. E. Vasil’ev, I. I. Krasnyuk, S. Ravikumar, and V. N. Tokhmachi, Khim.-Farm. Zh. 35 (11), 29 (2001).

    Google Scholar 

  11. Biomaterials Science: An Introduction to Materials in Medicine, Ed. by B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons (Elsevier Academic, London, 2004).

    Google Scholar 

  12. N. A. Lavrov and T. S. Kryzhanovskaya, Plast. Massy, No. 2, 42 (1995).

    Google Scholar 

  13. M. Dittgen, M. Durrani, and K. Lehmann, S. T. P. Pharma Sci. 7, 403 (1997)

  14. V. Kalous and Z. Pavliček, Biofyzikální chemie (SNTL, Prague, 1980).

    Google Scholar 

  15. G. M. Mrevlishvili, Low-Temperature Calorimetry of Biological Macromolecules (Metsniereba, Tbilisi, 1984) [in Russian].

    Google Scholar 

  16. V. Ur’yash and A. Gruzdeva, Thermodynamics of Biologically Active Substances (LAP Lambert Academic, Saarbrücken, 2017) [in Russian].

    Google Scholar 

  17. T. E. Knyazeva, V. A. Izvozchikova, and V. F. Ur’yash, RF Patent No. 2174522, Byull. Izobret., No. 28 (2001), p. 35.

  18. T. E. Knyazeva, I. B. Myasnikova, and Yu. D. Semchikov, Polymer Sci., Ser. A 40, 859 (1998).

    Google Scholar 

  19. Yu. S. Lipatov, A. E. Nesterova, T. M. Grishchenko, and R. A. Veselovskii, Reference Book on Polymer Chemistry (Nauk. Dumka, Kiev, 1971) [in Russian].

    Google Scholar 

  20. I. B. Rabinovich, V. P. Nistratov, V. I. Tel’noi, and M. S. Sheiman, Thermodynamics of Organometallic Compounds (Nizhegor. Univ., Nizh. Novgorod, 1996) [in Russian].

    Google Scholar 

  21. B. V. Lebedev and V. Ya. Lityagov, in Thermodynamics of Organic Compounds, Interschool Collection (Gor’k. Gos. Univ., Gorky, 1976), No. 5, p. 89 [in Russian].

  22. A. A. Sklyankin and P. G. Strelkov, Zh. Prikl. Mekh Tekh. Fiz., No. 2, 100 (1960).

  23. V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, and V. F. Shibakin, Prib. Tekh. Eksp., No. 6, 195 (1985).

  24. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).

    Article  CAS  Google Scholar 

  25. N. V. Karyakin, Principles of Chemical Thermodynamics, The Manual (Akademiya, Moscow, 2003) [in Russian].

    Google Scholar 

  26. K. K. Kelley, G. S. Parks, and H. M. Huffman, J. Phys. Chem. 33, 1802 (1929).

    Article  CAS  Google Scholar 

  27. V. F. Ur’yash, N. Yu. Kokurina, V. N. Larina, and S. V. Chuprova, Polymer Sci., Ser. A 56, 32 (2014)

    Article  Google Scholar 

  28. I. B. Rabinovich, B. V. Lebedev, and T. I. Melent’eva, Vysokomol. Soedin., Ser. A 9, 1699 (1967).

    CAS  Google Scholar 

  29. L. I. Pavlinov, I. B. Rabinovich, N. A. Okladnov, and S. A. Arzhakov, Vysokomol. Soedin., Ser. A 9, 483 (1967).

    CAS  Google Scholar 

  30. U. Gaur, Sukfai Lau, B. Wunderlich, and B. Wunderlich, J. Phys. Chem. Ref. Data 11, 1065 (1982).

    Article  CAS  Google Scholar 

  31. M. M. Popov and G. L. Gal’chenko, Zh. Obshch. Khim. 21, 2220 (1951).

    CAS  Google Scholar 

  32. Thermodynamic Properties of Individual Substances, The Handbook, Ed. by V. P. Glushko (Nauka, Moscow, 1978), Vol. 1, Part 2, p. 310 [in Russian].

    Google Scholar 

  33. R. Hoffmann and W. Knappe, Koll.-Z. Z. Polym. 247, 763 (1971).

    Article  CAS  Google Scholar 

  34. B. V. Lebedev, T. G. Kulagina, N. N. Smirnova, et al., Zh. Fiz. Khim. 69, 581 (1995).

    CAS  Google Scholar 

  35. V. A. Bershtein, V. M. Egorov, and V. A. Ryzhov, Vysokomol. Soedin., Ser. B 28, 268 (1986).

    CAS  Google Scholar 

  36. V. F. Uryash, T. E. Knyazeva, V. A. Izvozchikova, and N. Yu. Kokurina, in Advances in Condensed Matter and Materials Research, Ed. by F. Gerard (Nova Sci., New York, 2002), Vol. 3, pp. 169–175.

    Google Scholar 

  37. E. Yu. Ovchinnikov and Yu. P. Gorelov, Vysokomol. Soedin., Ser. B 30, 677 (1988).

    CAS  Google Scholar 

  38. A. A. Yousefi, M. Pishvaei, and A. Yousefi, Prog. Color Colorants Coat. 4, 15 (2011).

    Google Scholar 

  39. Yu. D. Semchikov, S. F. Zhil’tsov, and S. D. Zaitsev, Introduction to Polymer Chemistry, The Manual (Lan’, Nizh. Novgorod, 2012) [in Russian].

  40. J. G. Tsavalas, Y. Luo, L. Hudda, and F. J. Schork, Polym. React. Eng. 11, 277 (2003).

    Article  CAS  Google Scholar 

  41. D. F. Westrum, Jr. and J. P. Mccullough, in Physics and Chemistry of the Organic Solid State, Ed. by D. Fox, M. M. Labes, and A. Weissberger (Wiley, New York, 1965).

    Google Scholar 

  42. A. A. Tikhobaeva, L. A. Salomatina, and V. I. Sevast’yanov, Vestn. Transplantol. Iskusstv. Organov, No. 4, 50 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Ur’yash.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ur’yash, V.F., Chuprova, S.V., Kokurina, N.Y. et al. Heat Capacity, Thermodynamic Functions, and the Glass Transition of Butyl Methacrylate–Methacrylic Acid Copolymers. Russ. J. Phys. Chem. 96, 248–258 (2022). https://doi.org/10.1134/S0036024422020285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422020285

Keywords:

Navigation