Skip to main content
Log in

Induced Metals on BN–Nanotube by DFT/EPR Methods

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, the isolated boron nitride nanotube has been characterized using the B3LYP exchange-correlation functional of theory by electron paramagnetic resonance of EPR3 basis set. Then the effect of metals such as Li, Na, K, Be, Mg, and Ca inside BN–nanotube has been investigated. Nuclear Magnetic Resonance (NMR) parameters such as, isotropic chemical shielding, anisotropic chemical shielding, asymmetry, chemical shift anisotropy and total atomic charges of BN–nanotube including of metal systems have been calculated with GIAO approximation. It has been shown that the behavior of chemical shift tensor components (isotropic and anisotropic), chemical shift anisotropy, asymmetry and devotion depending on the metal that locating at the center of BN–nanotube that some of periodic transformations. Also, Atomic charge have considered to full alternation B, N and metal atoms in BN–nanotube determined the active sites of structures. Thermo chemical functions of relative enthalpy (ΔH), entropy (ΔS) and free Gibbs energy (ΔG) have been calculated. Our investigation exhibited that some metal atoms can strongly bind to the BN–nanotube to enhance the potential electronic molecular effects of these compounds for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Tian, B. Xu, D. Yu, et al., Nature (London, U.K.) 493, 385 (2013).

    Article  CAS  Google Scholar 

  2. A. Rubio et al., Phys. Rev. B 49, 5081 (1994).

    Article  CAS  Google Scholar 

  3. N. G. Chopra et al., Science (Washington, DC, U.S.) 269 (5226), 966 (1995).

    Article  CAS  Google Scholar 

  4. H. Wu, X. Xu, H. Jiao, F. Zhang, and J. Jia, Chin. Sci. Bull. 48, 1102 (2003).

    Article  CAS  Google Scholar 

  5. E. Durgun, S. Dag, V. M. K. Bagci, et al., Phys. Rev. B 67, 201401 (2003).

    Article  Google Scholar 

  6. Y. Yagi, T. M. Briere, M. H. F. Sluiter, et al., Phys. Rev. B 69, 75414 (2004).

    Article  Google Scholar 

  7. X. Wu and X. C. Zeng, Chem. Phys. 125, 044711 (2006).

    Google Scholar 

  8. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).

    Article  CAS  Google Scholar 

  9. M. Monajjemi and J. Khaleghian, Clust. Sci. 22, 673 (2011).

    Article  CAS  Google Scholar 

  10. A. Srivastava, S. Jain, and A. K. Nagawat, Quantum Matter 2, 469 (2013).

    Article  CAS  Google Scholar 

  11. H. Mohan Rai, N. K. Jaiswal, P. Srivastava, and R. Kurchania, J. Comput. Theor. Nanosci. 10, 368 (2013).

    Article  Google Scholar 

  12. M. Monajjemi and M. Seyed Hosseini, J. Comput. Theor. Nanosci. 10, 2473 (2013).

    Article  CAS  Google Scholar 

  13. G. H. Cocoletzi and N. Takeuchi, Quantum Matter 2, 382 (2013).

    Article  CAS  Google Scholar 

  14. W. Q. Han, P. Redlich, F. Ernst, and M. Rühle, Appl. Phys. Lett. 75, 1875 (1999).

    Article  CAS  Google Scholar 

  15. J.-Y. Guo, C.-X. Xu, F.-Y. Sheng, et al., Quantum Matter 2, 181 (2013).

    Article  CAS  Google Scholar 

  16. C. C. Tang, Y. Bo, D. Golberg, et al., Phys. Chem. B 107, 6539 (2003).

    Article  CAS  Google Scholar 

  17. I. Will, A. Ding, and Y. Xu, Quantum Matter 2, 17 (2013).

    Article  CAS  Google Scholar 

  18. M. Monajjemi, V. S. Lee, M. Khaleghian, et al., J. Phys. Chem. C 114, 15315 (2010).

    Article  CAS  Google Scholar 

  19. Z. Zhou, J. Zhao, Z. F. Chen, and P. R. Schleyer, Phys. Chem. B 110, 25678 (2006).

    Article  CAS  Google Scholar 

  20. N. G. Chopra, R. J. Luyken, K. Cherrey, et al., Science, New Ser. 269 (5226), 966 (1995).

    CAS  Google Scholar 

  21. D. Golberg, Y. Bo, M. Eremets, et al., Appl. Phys. Lett. 69, 2045 (1996).

    Article  CAS  Google Scholar 

  22. M. Monajjemi, L. Mahdavian, F. Mollaamin, and M. Khaleghian, Russ. J. Inorg. Chem. 54, 1465 (2010).

    Article  Google Scholar 

  23. M. Monajjemi, Struct. Chem. 23, 551 (2012).

    Article  CAS  Google Scholar 

  24. J. C. Charlier, A. de Vita, X. Blase, and R. Car, Science (Washington, DC, U. S.) 275 (5300), 647 (1997).

    Article  Google Scholar 

  25. A. Srivastava, N. Saraf, and A. K. Nagawat, Quantum Matter 2, 401 (2013).

    Article  CAS  Google Scholar 

  26. C. Tang and Y. Bando, Appl. Phys. Lett. 83, 659 (2003).

    Article  CAS  Google Scholar 

  27. A. M. Ilyin, Quantum Matter 2, 205 (2013).

    Article  CAS  Google Scholar 

  28. N. Grobert, Mater. Today 10, 28 (2007).

    Article  CAS  Google Scholar 

  29. A. Srivastava, N. Jain, and A. K. Nagawat, Quantum Matter 2, 307 (2013).

    Article  CAS  Google Scholar 

  30. H. Yahyaei, M. Monajjemi, H. Aghaie, and K. Zare, J. Comput. Theor. Nanosci. 10, 2332 (2013).

    Article  CAS  Google Scholar 

  31. S. Celasun, Rev. Theor. Sci. 1, 319 (2013).

    Article  Google Scholar 

  32. J. Kaur and N. Goel, J. Comput. Theor. Nanosci. 10, 48 (2013).

    Article  CAS  Google Scholar 

  33. M. J. Frisch et al., Gaussian 98, Revision A.7 (Gaussian, Inc., Pittsburgh, PA, 1998).

  34. P. Pyykkö, Mol. Phys. 99, 1617 (2001).

    Article  Google Scholar 

  35. J. R. Cheeseman, M. J. Frisch, F. J. Devlin, and P. J. Stephens, Chem. Phys. Lett. 252, 211 (1996).

    Article  CAS  Google Scholar 

  36. C. Pisani, S. Casassa, and P. Ugliengo, Chem. Phys. Lett. 253, 201 (1996).

    Article  CAS  Google Scholar 

  37. V. Subramanian, K. Venkatesh, D. Mary Prabha, and T. Ramasami, Chem. Phys. Lett. 276, 9 (1997).

    CAS  Google Scholar 

  38. R. Poirer, R. Kari, and I. G. Csizmadia, Handbook of Gaussian Basis Sets: A Compendium for Ab-initio Molecular Orbital Calculations (Elsevier Science, New York, 1985)

    Google Scholar 

  39. S. Olszewski, Quantum Matter 2, 102 (2013).

    Article  CAS  Google Scholar 

  40. G. Leichtfried et al., in Lolt-Börnstein–Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard, and Intermetallic Materials, Ed. by P. Beiss et al. (Springer, Berlin, 2002), Vol. 2A2.

  41. X. Blase et al., Europhys. Lett. 28, 335 (1994).

    Article  CAS  Google Scholar 

  42. Wei-Qiang Han et al., Appl. Phys. Lett. 81, 1110 (2002).

    Article  CAS  Google Scholar 

  43. S. N. Bhattacharyya and A. Mukherjee, J. Phys. Chem. 72, 56 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Mollaamin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mollaamin, F., Shahriari, S. & Monajjemi, M. Induced Metals on BN–Nanotube by DFT/EPR Methods. Russ. J. Phys. Chem. 95 (Suppl 2), S331–S337 (2021). https://doi.org/10.1134/S003602442115019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442115019X

Keywords:

Navigation