Skip to main content
Log in

High-Efficiency and Conveniently Recyclable Photocatalysts for Methyl Violet Dye Degradation Based on Rod-Shaped Nano-MnO2

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A rod-shaped manganese oxide nanoparticles (MnO2) were successfully synthesized by a simple hydrothermal method. The phase composition, morphology, elemental composition, surface groups, and photocatalytic properties of nano-MnO2 were characterized using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoemission spectroscopy (XPS), and UV–Vis absorption spectrophotometry. The optimum reaction conditions are determined to be the reaction temperature of 120°C, and the reaction time of 12 h. Nano-MnO2 exhibited a uniform rod-shaped structure with a length in the range of 2–3 μm and the diameter of 50–60 nm. Furthermore, the prepared nano-MnO2 photocatalyst displayed the highest photocatalytic activity, with a methyl violet (MV) degradation ratio up to 89.5%, and the optimum nano-MnO2 dosage is 0.4 mg/mL. Besides, the nano-MnO2 sample possesses a stable and efficient photocatalytic performance after five recycling runs, demonstrating that the excellent recyclability and stability of sample under UV–Vis light irradiation. In summary, this result indicated that nano-MnO2 photocatalyst exhibited great promise as a means of effectively treating organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Porras, C. Bedoya, J. Silva-Agredo, et al., Water Res. 94, 1 (2016). https://doi.org/10.1016/j.watres.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  2. S. I. Siddiqui, O. Manzoor, M. Mohsin, and S. A. Chaudhry, Environ. Res. 171, 328 (2019). https://doi.org/10.1016/j.envres.2018.11.044

    Article  CAS  PubMed  Google Scholar 

  3. X. Xie, Y. Liu, X. Dong, et al. Appl. Surf. Sci. 455, 742 (2018). https://doi.org/10.1016/j.apsusc.2018.05.217

    Article  CAS  Google Scholar 

  4. S. M. Patil, V. V. Chanshive, N. R. Rane, et al., Environ. Res. 146, 340 (2016). https://doi.org/10.1016/j.envres.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  5. Y. Liu, H. Guo, Zhang, et al., Sep. Purif. Technol. 192, 88 (2018). https://doi.org/10.1016/j.seppur.2017.09.045

    Article  CAS  Google Scholar 

  6. D. Tekin, H. Kiziltas, and H. Ungan, J. Mol. Liq. 306, 112905 (2020). https://doi.org/10.1016/j.molliq.2020.112905

    Article  CAS  Google Scholar 

  7. N. Guettai Ait and H. Amar, Desalination 185, 427 (2005). https://doi.org/10.1016/j.desal.2005.04.048

    Article  CAS  Google Scholar 

  8. M. Y. Ghaly, J. Y. Farah, and A. M. Fathy, Desalination 217, 74 (2007). https://doi.org/10.1016/j.desal.2007.01.013

    Article  CAS  Google Scholar 

  9. Z. Y. Li, Z. G. Jia, W. W. Li, et al., Rare Metal Mat. Eng. 46, 3669 (2017). https://doi.org/10.1016/S1875-5372(18)30055-9

    Article  CAS  Google Scholar 

  10. D. Wu, J. Li, J. Guan, et al., J. Ind. Eng. Chem. 64, 206 (2018). https://doi.org/10.1016/j.jiec.2018.03.017

    Article  CAS  Google Scholar 

  11. J. Diaz-Angulo, J. Lara-Ramos, M. Mueses, et al., Chem. Eng. J. 381, 122520 (2020). https://doi.org/10.1016/j.cej.2019.122520

    Article  CAS  Google Scholar 

  12. S. R. Zhu, M. K. Wu, W. N. Zhao, et al., J. Solid State Chem. 255, 17 (2017). https://doi.org/10.1016/j.jssc.2017.07.038

    Article  CAS  Google Scholar 

  13. Z. Shi, Y. Zhang, X. Shen, et al., Chem. Eng. J. 386, 124010 (2020). https://doi.org/10.1016/j.cej.2020.124010

    Article  CAS  Google Scholar 

  14. M. S. Mahmoud, E. Ahmed, A. A. Farghali, et al., Colloid Surf., A 554, 100 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.039

  15. Y. Yu, G. Chen, Y. Zhou, and Z. H. Han, J. Rare Earth 33, 453 (2015). https://doi.org/10.1016/S1002-0721(14)60440-3

  16. N. T. Shimpi, Y. N. Rane, D. A. Shende, et al., Optik 217, 164916 (2020). https://doi.org/10.1016/j.ijleo.2020.164916

    Article  CAS  Google Scholar 

  17. H. Cao, Z. Liu, T. Liu, et al., Mater. Charact. 160, 110125 (2020). https://doi.org/10.1016/j.matchar.2020.110125

    Article  CAS  Google Scholar 

  18. J. Jia, C. Jiang, X. Zhang, et al., Appl. Surf. Sci. 495, 143524 (2019). https://doi.org/10.1016/j.apsusc.2019.07.266

    Article  CAS  Google Scholar 

  19. X. Y. Sun, F. J. Zhang, and C. Kong, Colloid. Surf., A 594, 124653 (2020). https://doi.org/10.1016/j.colsurfa.2020.124653

  20. M. Parthibavarman, M. Karthik, and S. Prabhakaran, Vacuum 155, 224 (2018). https://doi.org/10.1016/j.vacuum.2018.06.021

    Article  CAS  Google Scholar 

  21. D. Tekin, D. Birhan, and H. Kiziltas, Therm. Mater. Chem. Phys. 251, 123067 (2020). https://doi.org/10.1016/j.matchemphys.2020.123067

    Article  CAS  Google Scholar 

  22. M. T. Islam, A. Dominguez, R. S. Turley, et al., Sci. Total Environ. 704, 135406 (2020). https://doi.org/10.1016/j.scitotenv.2019.135406

    Article  CAS  PubMed  Google Scholar 

  23. S. Frindy and M. Sillanpää, Mater. Des. 188, 108461 (2020). https://doi.org/10.1016/j.matdes.2019.108461

    Article  CAS  Google Scholar 

  24. J. Bai, H. Xu, G. Chen, et al., Mater. Chem. Phys. 234, 75 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.047

    Article  CAS  Google Scholar 

  25. X. Gao, Y. Shang, L. Liu, and K. L. Gao, J. Alloys Compd. 803, 565 (2019). https://doi.org/10.1016/j.jallcom.2019.06.311

    Article  CAS  Google Scholar 

  26. P. P. Tun, J. Wang, T. T. Khaing, et al., J. Alloys Compd. 818, 152836 (2020). https://doi.org/10.1016/j.jallcom.2019.152836

    Article  CAS  Google Scholar 

  27. B. B. Wu, Y. Li, K. Su, et al., J. Hazard. Mater. 377, 227 (2019). https://doi.org/10.1016/j.jhazmat.2019.05.074

    Article  CAS  PubMed  Google Scholar 

  28. A. Gagrani, J. Zhou, and T. Tsuzuki, Ceram. Int. 44, 4694 (2018). https://doi.org/10.1016/j.ceramint.2017.12.050

    Article  CAS  Google Scholar 

  29. J. Zhao, Z. Zhao, N. Li, et al., Chem. Eng. J. 353, 805 (2018). https://doi.org/10.1016/j.cej.2018.07.163

    Article  CAS  Google Scholar 

  30. P. Singh, A. Sudhaik, P. Raizada, et al., Mater. Today Chem. 12, 85 (2019). https://doi.org/10.1016/j.mtchem.2018.12.006

    Article  CAS  Google Scholar 

  31. A. Baral, D. P. Das, M. Minakshi, et al., Chem. Sel. 1, 4277 (2016). https://doi.org/10.1002/slct.201600867

    Article  CAS  Google Scholar 

  32. M. Rahmat, A. Rehman, S. Rahmat, et al., J. Mater. Res. Technol. 8, 5149 (2019). https://doi.org/10.1016/j.jmrt.2019.08.038

    Article  CAS  Google Scholar 

  33. G. U. Rehman, M. Tahir, and P. S. Goh, Powder Technol. 356, 547 (2019). https://doi.org/10.1016/j.powtec.2019.08.026

    Article  CAS  Google Scholar 

  34. M. K. Racik, K. P. Prabakaran, J. Madhavan, and M. V. Antony Raj, Mater. Today: Proc. 8, 162 (2019). https://doi.org/10.1016/j.matpr.2019.02.095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-fang Zheng or Qi Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Liu, Zq., Han, Yj. et al. High-Efficiency and Conveniently Recyclable Photocatalysts for Methyl Violet Dye Degradation Based on Rod-Shaped Nano-MnO2. Russ. J. Phys. Chem. 95 (Suppl 2), S388–S395 (2021). https://doi.org/10.1134/S0036024421150152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421150152

Keywords:

Navigation