Skip to main content
Log in

Analysis of Bonding Properties of Osmabenzyne in the Ground State (S0) and Excited Singlet (S1) State: A Quantum-Chemical Calculation

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The hybrid density functional MPW1PW91 theory was applied in the ground state (S0) and first excited singlet (S1) state to highlight the structure, electronic properties, and aromaticity of an osmabenzyne complex. The first singlet excited state was determined by time-dependent DFT (TD-DFT) method. It was tried to explore the geometry, frontier orbital energies, reactivity indices, and aromaticity in the first singlet excited state of osmabenzyne complex and compare to ground state. Moreover, this study determined the involvement of the fragments of the studied complexes in the frontier orbitals regarding the ground state and first singlet excited state. Energy decomposition analysis (EDA) for S0 and S1 states was applied to study the nature of the chemical bond between the [Os (PH3)2Cl2]2+ and [C5H4]2– fragment. ‎In addition, the Os–C, Os–Cl, and Os–P bonds in the studied osmabenzyne were clarified using quantum theory of atoms in molecules analysis (QTAIM) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Jia, Acc. Chem. Res. 37, 479 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. G. Jia, Coord. Chem. Rev. 251, 2167 (2007).

    Article  CAS  Google Scholar 

  3. J. Chen, H. H. Y. Sung, I. D. Williams, Z. Lin, and G. Jia, Angew. Chem., Int. Ed. 50, 10675 (2011).

    Article  CAS  Google Scholar 

  4. J. Chen and G. Jia, Coord. Chem. Rev. 257, 2491 (2013).

    Article  CAS  Google Scholar 

  5. X-Y. Cao, Q. Zhao, Z. Lin, and H. Xia, Acc. Chem. Res. 47, 341 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. G. Jia, Organometallics 32, 6852 (2013).

    Article  CAS  Google Scholar 

  7. G. P. Elliott, W. R. Roper, and J. M. Waters, J. Chem. Soc., Chem. Commun. 1982, 811 (1982).

    Article  Google Scholar 

  8. T. B. Wen, Z. Y. Zhou, and G. Jia, Angew. Chem., Int. Ed. 40, 1951 (2001).

    Article  CAS  Google Scholar 

  9. T. B. Wen, W. Y. Hung, H. H. Y. Sung, I. D. Williams, and G. Jia, J. Am. Chem. Soc. 127, 2856 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. W. Y. Hung, J. Zhu, T. B. Wen, K. P. Yu, H. H. Y. Sung, I. D. Williams, Z. Lin, and G. Jia, J. Am. Chem. Soc. 128, 13742 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. T. B. Wen, S. M. Ng, W. Y. Hung, Z. Y. Zhou, M. F. Lo, L. Y. Shek, I. D. Williams, Z. Lin, and G. Jia, J. Am. Chem. Soc. 125, 884 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. G. He, J. Zhu, W. Y. Hung, T. B. Wen, H. H. Y. Sung, I. D. Williams, Z. Lin, and G. Jia, Angew. Chem., Int. Ed. 46, 9065 (2007).

    Article  CAS  Google Scholar 

  13. Y. Zhang, Y. Chi, J. Wei, Q. Yang, Z. Yang, H. Chen, R. Yang, W.-X. Zhang, and Z. Xi, Organometallics 36, 2982 (2017).

    Article  CAS  Google Scholar 

  14. Y. Zhang, J. Wei, Y. Chi, X. Zhang, W.-X. Zhang, and Z. Xi, J. Am. Chem. Soc. 139, 5039 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. B. J. Frogley and L. J. Wright, Chem.-Eur. J. 24, 2025 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. H. Wang, X. Zhou, and H. Xia, Chin. J. Chem. 36, 93 (2018).

    Article  CAS  Google Scholar 

  17. Y. Zhang, Z. Yang, W.-X. Zhang, and Z. Xi, Chem.-Eur. J. 25, 4218 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. J. Wei, W.-X. Zhang, and Z. Xi, Chem. Sci. 9, 560 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. S.-Y. Yang, X-Y. Li, and Y.-Z. Huang, J. Organomet. Chem. 658, 9 (2002).

    Article  CAS  Google Scholar 

  20. R. Ghiasi, H. Pasdar, and F. Irajizadeh, J. Chil. Chem. Soc. 60, 2740 (2015).

    Article  CAS  Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  22. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).

    Article  CAS  Google Scholar 

  23. P. C. Hariharan and J. A. Pople, Mol. Phys. 27, 209 (1974).

    Article  CAS  Google Scholar 

  24. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).

    Article  CAS  Google Scholar 

  25. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 284 (1985).

    Article  Google Scholar 

  26. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992).

    Article  CAS  Google Scholar 

  27. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).

    Article  CAS  Google Scholar 

  28. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

    Article  CAS  Google Scholar 

  29. R. C. Dunbar, J. Phys. Chem. A 106, 7328 (2002).

    Article  CAS  Google Scholar 

  30. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 6655 (2001).

    Article  CAS  Google Scholar 

  31. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 4851 (2001).

    Article  CAS  Google Scholar 

  32. Y. Zhang, Z. Guo, and X.-Z. You, J. Am. Chem. Soc. 123, 9378 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

    Article  CAS  Google Scholar 

  34. N. M. O’Boyle, A. L. Tenderholt, and K. M. Langer, J. Comput. Chem. 29, 839 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. T. Lu and F. Chen, J. Mol. Graph. Model. 38, 314 (2012).

    Article  PubMed  CAS  Google Scholar 

  36. M. Xiao and T. Lu, J. Adv. Phys. Chem. 4, 111 (2015).

    Article  CAS  Google Scholar 

  37. T. A. Keith, AIMAll 17.01.25 ed. aim.tkgristmill.com. Accessed 2017.

  38. R. G. Pearson, Chemical Hardness (Wiley-VCH, Oxford, 1997).

    Book  Google Scholar 

  39. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  40. R. G. Parr, L. v. Szentpály, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  41. S. Dapprich and G. Frenking, J. Phys. Chem. 99, 9352 (1995).

    Article  CAS  Google Scholar 

  42. M. Palusiak, J. Organomet. Chem. 692, 3866 (2005).

    Article  CAS  Google Scholar 

  43. P. Macchi and A. Sironi, Coord. Chem. Rev. 239, 383 (2003).

    Article  CAS  Google Scholar 

  44. J. Poater, X. Fradera, M. Duran, and M. Solà, Chem. Eur. J. 9, 400 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. J. Poater, M. Duran, M. l. Solà, and B. Silvi, Chem. Rev. 105, 3911 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vahid Daneshdoost, Ghiasi, R. & Marjani, A. Analysis of Bonding Properties of Osmabenzyne in the Ground State (S0) and Excited Singlet (S1) State: A Quantum-Chemical Calculation. Russ. J. Phys. Chem. 94, 2594–2600 (2020). https://doi.org/10.1134/S0036024420120080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420120080

Keywords:

Navigation