Skip to main content
Log in

Structures and Properties of β-Titanium Alloys Doped with Trace Transition Metals: A Density Functional Theory Study

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

We systematically calculate the structure, formation enthalpy, formation free energy, elastic constants and electronic structure of Ti0.98X0.02 system by density functional theory (DFT) simulations to explore the effect of transition metal X (X = Ag, Cd, Co, Cr, Cu, Fe, Mn, Mo, Nb, Ni, Pd, Rh, Ru, Tc, and Zn) on the stability mechanism of β-titanium. Based on our calculations, the results of formation enthalpy and free energy show that the adding small amounts of X is beneficial to the thermodynamic stability of β-titanium. This behavior is well explained by the density of state (DOS). However, the tetragonal shear moduli of Ti0.98X0.02 systems are negative, indicating that β-titanium doping with a low concentration of X is still elastically unstable at 0 K. Therefore, we theoretically explain that β-titanium doped with trace transition metal X is unstable in the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, and C. T. Liu, Nat. Mater. 15, 876 (2016).

    Article  CAS  Google Scholar 

  2. Y. L. Hao, S. J. Li, B. B. Sun, M. L. Sui, and R. Yang, Phys. Rev. Lett. 98, 216405 (2007).

    Article  CAS  Google Scholar 

  3. Q. Yu, L. Qi, T. Tsuru, R. Traylor, D. Rugg, J. W. Morris, Jr., M. Asta, D. C. Chrzan, and A. M. Minor, Science (Washington, DC, U. S.) 347, 635 (2015).

    Article  CAS  Google Scholar 

  4. C. X. Zou, J. S. Li, W. Y. Wang, Y. Zhang, B. Tang, H. Wang, D. Lin, J. Wang, H. C. Kou, and D. S. Xu, Comput. Mater. Sci. 152, 169 (2018).

    Article  CAS  Google Scholar 

  5. C. Marker, S. L. Shang, J. C. Zhao, and Z. K. Liu, Comput. Mater. Sci. 142, 215 (2018).

    Article  CAS  Google Scholar 

  6. W. C. Zhou, R. Sahara, and K. Tsuchiya, J. Alloys Compd. 727, 579 (2017).

    Article  CAS  Google Scholar 

  7. H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, and S. Miyazaki, Acta Mater. 54, 2419 (2006).

    Article  CAS  Google Scholar 

  8. Y. Al-Zain, H. Y. Kim, H. Hosoda, T. H. Nam, and S. Miyazaki, Acta Mater. 58, 4212 (2010).

    Article  CAS  Google Scholar 

  9. C. M. Lee, C. P. Ju, and J. H. Chern Lin, J. Oral Rehabil. 29, 314 (2002).

    Article  CAS  Google Scholar 

  10. Y. L. Zhou, M. Niinomi, and T. Akahori, Mater. Sci. Eng. A 371, 283 (2004).

    Article  Google Scholar 

  11. X. Tang, T. Ahmed, and H. J. Rack, J. Mater. Sci. 35, 1805 (2000).

    Article  CAS  Google Scholar 

  12. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  13. G. Kresse and J. Furthmüller, J. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  14. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  15. J. P. Perdew and K. Burke, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  16. J. P. Perdew and K. Burke, Int. J. Quantum. Chem. 57, 309 (1996).

    Article  CAS  Google Scholar 

  17. P. E. Blöchl, Phys. Rev. B 50, 17953 (2004).

    Article  Google Scholar 

  18. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  19. W. W Xu, Y. Wang, C. P. Wang, X. J. Liu, and Z. K. Liu, Scr. Mater. 100, 5 (2015).

    Article  CAS  Google Scholar 

  20. M. Rakhshi, M. Mohsen, and R. Hossein, Russ. J. Phys. Chem. A 92, 540 (2018).

    Article  CAS  Google Scholar 

  21. L. F. Zhu, M. Friak, A. Dick, B. Grabowski, T. Hickel, F. Liot, D. Holec, A. Schlieter, U. Kühn, J. Eckert, Z. Ebrahimi, H. Emmerich, and J. Neugebauer, Acta Mater. 60, 1594 (2012).

    Article  CAS  Google Scholar 

  22. D. Raabe, B. Sander, M. Friák, D. Ma, and J. Neugebauer, Acta Mater. 55, 4475 (2007).

    Article  CAS  Google Scholar 

  23. H. C. Zhai, X. F. Li, and J. Y. Du, Mater. Trans. 53, 1247 (2012).

    Article  CAS  Google Scholar 

  24. O. Beckstein, J. E. Klepeis, G. L. W. Hart, and O. Pankratov, Phys. Rev. B 63, 134112 (2001).

    Article  Google Scholar 

  25. J. Song, Z. B. Gao, L. Zhang, W. H. Wu, B. B. He, and L. Lu, Mol. Simul. 45, 935 (2019).

    Article  CAS  Google Scholar 

  26. Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

    Article  Google Scholar 

  27. B. Magyari-Kope, G. Grimvall, and L. Vitos, Phys. Rev. B 66, 064210 (2002).

    Article  Google Scholar 

  28. Q. M. Hu and R. Yang, Curr. Opin. Solid State Mater. 10, 19 (2006).

    Article  CAS  Google Scholar 

  29. B. W. Levinger, J. Mater. 5, 195 (1953).

    Google Scholar 

  30. T. Chihi, M. Fatmi, B. Ghebouli, and M. A. Ghebouli, Chin. J. Phys. 54, 127 (2016).

    Article  CAS  Google Scholar 

  31. Z. N. Ma, X. Wang, T. T. Yan, Q. Li, Q. C. Xu, J. L. Tian, and L. Wang, J. Alloys Compd. 708, 29 (2017).

    Article  CAS  Google Scholar 

  32. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Mater. Sci. Eng. A 243, 244 (1998).

    Article  Google Scholar 

  33. H. Ledbetter, H. Ogi, S. Kai, S. Kim, and M. Hirao, J. Appl. Phys. 95, 4642 (2004).

    Article  CAS  Google Scholar 

  34. P. Fischer, H. Leber, V. Romano, H. P. Weber, N. P. Karapatis, C. Andre, and R. Glardon, Appl. Phys. A 78, 1219 (2004).

    Article  CAS  Google Scholar 

  35. Q. Yao, J. Sun, H. Xing, W. Y. Guo, and T. Nonferr, Metal. Soc. 17, 1417 (2007).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the project to strengthen industrial development at the grass-roots level (project no. TC160A310/19), Young science and technology talents upgrading scheme (project no. 18SG-15), and technical innovation project of Shanghai research institute of materials (project no. 19SG-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Song.

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia Song, Wang, L., Zhang, L. et al. Structures and Properties of β-Titanium Alloys Doped with Trace Transition Metals: A Density Functional Theory Study. Russ. J. Phys. Chem. 94, 2055–2063 (2020). https://doi.org/10.1134/S0036024420100283

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420100283

Keywords:

Navigation