Skip to main content
Log in

Density Functional Theory Study of Meso-Tetra-Substituted Porphyrins: 3-Pyridyl Substitution for Phenyl

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In the present work, the geometry, electronic structure, and infrared spectra (IR) of meso-tetra-substituted porphyrin have been investigated theoretically. The optimization of geometries and electronic structure calculations of meso-tetraphenylporphyrin (TPP) and meso-tetra(3-pyridyl)porphyrin (T3PyP) are performed on the basis of density functional theory. The substitution of pyridyl for phenyl in meso-tetra-substituted porphyrins can result into the reduction of molecular size, including the molecular diameter, as well as the size of the central ring of porphin. It has also been found that the molecular orbital energies of T3PyP are smaller than the counterparts of TPP whereas there is almost no change in the HOMO–LOMO gap. Additionally, the infrared spectrum of TPP and T3PyP has been compared in order to determine whether there is a red shift or a blue shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. N. Aswany, Arya Suresh, G. Vijayakumar, and Th. Renjith, Int. J. Curr. Res. Chem. Pharm. Sci. 3, 40 (2016).

    CAS  Google Scholar 

  2. Angyang Yu et al., Kinet. Catal. 57, 145 (2016).

    Article  CAS  Google Scholar 

  3. H. Szatylowicz, A. Jezuita, K. Ejsmont, and T. M. Krygowski, J. Phys. Chem. A 121, 5196 (2017).

    Article  CAS  Google Scholar 

  4. Angyang Yu, Can. J. Phys. 91, 815 (2013).

    Article  CAS  Google Scholar 

  5. Angyang Yu et al., J. Magn. Magn. Mater. 422, 20 (2017).

    Article  CAS  Google Scholar 

  6. Angyang Yu et al., Kovov. Mater. 55, 291 (2017).

    CAS  Google Scholar 

  7. J. R. Sommer, A. H. Shelton, A. Parthasarathy, I. Ghiviriga, J. R. Reynolds, and K. S. Schanze, Chem. Mater. 23, 5296 (2011).

    Article  CAS  Google Scholar 

  8. S. E. J. Bell, J. M. Hegarty, and F. Morvan, J. Raman Spectrosc. 31, 289 (2000).

    Article  CAS  Google Scholar 

  9. L. C. Xu, Z. Y. Li, W. Tan, T. J. He, F. C. Liu, and D. M. Chen, Spectrochim. Acta, A 62, 850 (2005).

    Article  Google Scholar 

  10. M. M. El-Nahass, H. M. Zeyada, M. S. Aziz, and M. M. Makhlouf, Spectrochim. Acta, A 62, 11 (2005).

    Article  CAS  Google Scholar 

  11. M. M. El-Nahass, H. M. Zeyada, M. S. Aziz, and M. M. Makhlouf, Opt. Laser Technol. 39, 347 (2007).

    Article  CAS  Google Scholar 

  12. M. Koŕínek, P. Klinger, R. Dědic, J. Pšenčík, A. Svoboda, and J. Hála, J. Lumin. 122, 247 (2007).

    Article  Google Scholar 

  13. M. Scarselli, P. Castrucci, D. Monti, and M. De Crescenzi, Surf. Sci. 601, 5526 (2007).

    Article  CAS  Google Scholar 

  14. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989).

    Article  CAS  Google Scholar 

  15. J. R. Durig et al., J. Mol. Struct. 1099, 163 (2015).

    Article  CAS  Google Scholar 

  16. K. D. Dobbs and W. J. Hehre, J. Comput. Chem. 8, 880 (1987).

    Article  CAS  Google Scholar 

  17. Lu Han, D. Iguchi, Ph. Gil, T. R. Heyl, V. M. Sedwick, C. R. Arza, S. Ohashi, D. J. Lacks, and H. Ishida, J. Phys. Chem. A 121, 6269 (2017).

    Article  CAS  Google Scholar 

  18. C. Peng and H. B. Schlegel, Israel J. Chem. 33, 449 (1993).

    Article  CAS  Google Scholar 

  19. Angyang Yu et al., Zeitschr. Naturforsch. A 70, 1025 (2015).

    Article  CAS  Google Scholar 

  20. A. Gutberlet, G. W. Schwaab, and M. Havenith, Chem. Phys. 343, 158 (2008).

    Article  CAS  Google Scholar 

  21. W. Reckien, Ch. Spickermann, M. Eggers, and B. Kirchner, Chem. Phys. 343, 186 (2008).

    Article  CAS  Google Scholar 

  22. L. Kabalan and S. F. Matar, Chem. Phys. 359, 14 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ang-Yang Yu.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang-Yang Yu Density Functional Theory Study of Meso-Tetra-Substituted Porphyrins: 3-Pyridyl Substitution for Phenyl. Russ. J. Phys. Chem. 94, 604–607 (2020). https://doi.org/10.1134/S0036024420030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420030036

Keywords:

Navigation