Skip to main content
Log in

Dynamics of Lignin Destruction in Pine Wood under the Action of Ozone

  • BIOPHYSICAL CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The destruction of lignin in pinewood during ozonization is studied via diffuse reflection IR spectroscopy (DRIFT) and Raman spectroscopy. The DRIFT spectra are deconvoluted into Lorentz components. Samples of dioxanlignin obtained from wood are analyzed by means of UV spectroscopy (second derivatives). Based on the DRIFT, Raman, and UV spectra, specific rates of ozone (Qr) consumption corresponding to the oxidation of different structures on the wood surface are determined. In the range of Qr ≤ 1.5 mmol/g, the predominant process is the breakdown of aromatic rings. In the range of 1.5–3.0 mmol/g, hydroxyaromatic compounds formed at the first stage of ozonization are oxidized. At Qr higher than 2.0 mmol/g, aliphatic structures of lignin are also oxidized by ozone, along with carbonyl and carboxylic oxidation products occurring on the surface. These lignin oxidation products block to some extent the accessibility of lignin for ozone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. G. Bogolitsyn, Ros. Khim. Zh. (Zh. Ros. Khim. Ob-va im. D. I. Mendeleeva) 48 (6), 105 (2004).

  2. M. M. Ksenofontova, A. N. Mitrofanova, N. A. Mamleeva, et al., Ozone: Sci. Eng. 25, 505 (2003).

    Article  CAS  Google Scholar 

  3. A. N. Mitrofanova, A. G. Khudoshin, and V. V. Lunin, Russ. J. Phys. Chem. A 86, 360 (2012).

    Article  Google Scholar 

  4. A. G. Khudoshin, A. N. Mitrofanova, and V. V. Lunin, Russ. Chem. Bull. 57, 283 (2008).

    Article  CAS  Google Scholar 

  5. B. Ferron, J. P. Croué, and M. Dore, Ozone: Sci. Eng. 17, 687 (1995).

    Article  CAS  Google Scholar 

  6. F. Bertaud, J. P. Croué, and B. Legube, Ozone: Sci. Eng. 23, 139 (2001).

    Article  CAS  Google Scholar 

  7. R. Travaini, J. Martín-Juárez, A. Lorenzo-Hernando, and S. Bolado-Rodriges, Biores. Technol. 199, 2 (2016).

    Article  CAS  Google Scholar 

  8. C. Li, L. Wang, Z. Chen, Y. Li, et al., Biores. Technol. 183, 240 (2015).

    Article  CAS  Google Scholar 

  9. E. M. Ben’ko, D. G. Chukhchin, and V. V. Lunin, Russ. J. Phys. Chem. A 91, 2092 (2017).

    Article  Google Scholar 

  10. N. A. Mamleeva, S. A. Autlov, N. G. Bazarnova, and V. V. Lunin, Russ. J. Bioorg. Chem. 42, 694 (2016).

  11. Z. Yu, H. Jameel, H.-M. Chang, and S. Park, Biores. Technol. 102, 9083 (2011).

    Article  CAS  Google Scholar 

  12. N. A. Mamleeva, A. N. Kharlanov, D. G. Chukhchin, et al., Khim. Rastit. Syr’ya, No. 1, 85 (2019). https://doi.org/10.14258/jcprm.2019015143

  13. N. A. Mamleeva, A. L. Kustov, and V. V. Lunin, Russ. J. Phys. Chem. A 92, 1675 (2018). https://doi.org/10.1134/S0036024418090182

    Article  CAS  Google Scholar 

  14. N. A. Mamleeva, A. N. Kharlanov, N. A. Babaeva, and V. V. Lunin, Russ. J. Phys. Chem. A 93, 29 (2019).

    Google Scholar 

  15. M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Vibrat. Spectrosc. 36, 23 (2004).

    Article  CAS  Google Scholar 

  16. O. Yu. Derkacheva and D. A. Sukhov, in Modern Polymer Spectrosocopy, Proceedings of the 265th Macromolecular Symposia, Seggauberg, Austria, Sept. 9–12,2007 (Wiley-VCH, 2008), p. 61.

  17. K. K. Pandey and K. S. Theagarjan, Holz Roh- Werkstoff 55, 383 (1997).

    Article  CAS  Google Scholar 

  18. O. Faix and J. H. Böttcher, Holz Roh-Werkstoff 50, 221 (1992).

    Article  CAS  Google Scholar 

  19. G. M. Howell, L. F. C. de Oliveira Edwards, and M. Nesbitt, Analyst 128, 82 (2003).

    Article  Google Scholar 

  20. J. S. Lupoi, S. Singh, R. Parthasarathi, et al., Renewable Sustainable Energy Rev. 49, 871 (2015).

    Article  CAS  Google Scholar 

  21. L. M. Proniewicz, C. Paluszkiewicz, A. Weselucha-Birczyńska, et al., J. Mol. Struct. 614, 345 (2002).

    Article  CAS  Google Scholar 

  22. M. Takayama, T. Johjima, T. Yamanaka, et al., Spectrochim. Acta, Part A 53, 1621 (1997).

    Article  Google Scholar 

  23. N. R. Popova and K. G. Bogolitsyn, in Physical Chemistry of Lignin, Ed. by K. G. Bogolitsyn and V. V. Lunin (Arkhang. Gos. Tekh. Univ., Arkhangel’sk, 2009), p. 221 [in Russian].

  24. S. V. Li, Sv. Papperstidn. 85, 162 (1982) (1982).

  25. R. Götz, Fresenius Z. Anal. Chem. 296, 406 (1979).

    Article  Google Scholar 

  26. K. G. Bogolitsyn, Zh. Prikl. Spektrosk. 46, 1024 (1987).

    Google Scholar 

  27. N. A. Mamleeva, S. A. Autlov, A. V. Fionov, N. G. Bazarnova, and V. V. Lunin, Russ. J. Phys. Chem. A 83, 745 (2009).

    Article  CAS  Google Scholar 

  28. A. V. Obolenskaya, Z. P. El’nitskaya, and A. A. Leonovich, Laboratory Work on the Chemistry of Wood and Cellulose (Ekologiya, Moscow, 1991) [in Russian].

    Google Scholar 

  29. J. E. Holladay, J. J. Bozell, J. F. White, and D. Johnson, Top Value-Added Chemicals from Biomass (USA, 2007), Vol. 2. http://www.ntis.gov/ordering.htm.

  30. S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Elsevier, Amsterdam, 1984).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mamleeva.

Additional information

Translated by O. Polyakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamleeva, N.A., Kharlanov, A.N. & Lunin, V.V. Dynamics of Lignin Destruction in Pine Wood under the Action of Ozone. Russ. J. Phys. Chem. 93, 2550–2554 (2019). https://doi.org/10.1134/S0036024419120185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120185

Keywords:

Navigation