Skip to main content
Log in

Interaction between Fluorine and Graphene Vacancy Defects

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The results are presented from quantum-chemical simulations of the interaction between F and FHF ions and monovacancy and divacancy defects in graphene. The energy characteristics of fluorine chemisorption from ion associates with water molecules are determined. It is shown that the vacancies affect the parameters of chemisorption: the activation energy falls and the heat of adsorption rises, compared to those of an ordered graphene sheet. The relationship between the heat of chemisorption and the degree of fluorine coverage is studied. The characteristics of the reaction between vacancy defects and F, FHF, and hydroxonium ions are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. R. Nair, W. Ren, R. Jalil, et al., Small 6, 2877 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, et al., Nano Lett. 10, 3001 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. M. Chen, C. Qiu, H. Zhou, et al., J. Nanosci. Nanotechnol. 13, 1331 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. X. Wang, W. Wang, Y. Liu, et al., Phys. Chem. Chem. Phys. 18, 3285 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. L. Wang, X. Xie, W. Zhang, et al., J. Mater. Chem. C 2, 6484 (2014).

    Article  CAS  Google Scholar 

  6. G. Bruno, G. V. Bianco, M. M. Giangregorio, et al., Phys. Chem. Chem. Phys. 16, 13948 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. S. Sherpa, J. Kunc, Y. Hu, et al., Appl. Phys. Lett. 104, 081607 (2014).

    Article  CAS  Google Scholar 

  8. K.-I. Ho, C.-H. Huang, J.-H. Liao, et al., Sci. Rep. 4, 5893 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. L. Walter, H. Sahin, K. J. Jeon, et al., ACS Nano 8, 7801 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. N. A. Nebogatikova, I. V. Antonova, I. I. Kurkina, et al., Nanotecnology 27, 205601 (2016).

    Article  CAS  Google Scholar 

  11. A. I. Ivanov, N. A. Nebogatikova, I. A. Kotin, and I. V. Antonova, Phys. Chem. Chem. Phys. 19, 19010 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. M. Ren, X. Wang, C. Dong, et al., Phys. Chem. Chem. Phys. 17, 24056 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Q. Feng, N. Tang, F. Liu, et al., ACS Nano 7, 6729 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. K. Matsumura, S. Chiashi, S. Maruyama, and J. Choi, J. Appl. Surf. Sci. 432, 190 (2018).

    Article  CAS  Google Scholar 

  15. K. Hou, P. Gong, J. Wang, et al., RSC Adv. 4, 56543 (2014).

    Article  CAS  Google Scholar 

  16. W. Lai, Y. Yuan, X. Wang, et al., Phys. Chem. Chem. Phys. 20, 489 (2018).

    Article  CAS  Google Scholar 

  17. Y. H. Kim, J. S. Park, Y.-R. Choi, et al., J. Mater. Chem. A 5, 19116 (2017).

    Article  CAS  Google Scholar 

  18. O. Jankovsky, P. Simek, D. Sedmidubsky, et al., RSC Adv. 4, 1378 (2014).

    Article  CAS  Google Scholar 

  19. Y. Wang, W. C. Lee, K. K. Manga, et al., Adv. Mater. 24, 4285 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. V. Mazánek, O. Jankovsky, J. Luxa, et al., Nanoscale 7, 13646 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. C. Sun, Y. Feng, Y. Li, et al., Nanoscale 6, 2634 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. B. Li, K. Fan, X. Ma, et al., J. Colloid Interface Sci. 478, 36 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. N. A. Nebogatikova, I. V. Antonova, V. A. Volodin, and V. Ya. Prinz, Phys. E (Amsterdam, Neth.) 52, 106 (2013).

  24. N. A. Nebogatikova, I. V. Antonova, V. Ya. Prinz, et al., Nanotechnol. Russ. 9, 51 (2014).

    Article  Google Scholar 

  25. N. A. Nebogatikova, I. V. Antonova, V. Ya. Prinz, et al., Phys. Chem. Chem. Phys. 17, 13257 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. N. A. Nebogatikova, I. V. Antonova, V. Ya. Prinz, et al., Carbon 77, 1095 (2014).

    Article  CAS  Google Scholar 

  27. N. A. Lvova and O. Yu. Ananina, Comput. Mater. Sci. 101, 287 (2015).

    Article  CAS  Google Scholar 

  28. A. Hashimoto, K. Suenaga, A. Gloter, et al., Nature (London, U.K.) 430, 870 (2002).

    Article  CAS  Google Scholar 

  29. A. W. Robertson, B. Montanari, K. He, et al., ACS Nano 7, 4495 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. H. Terrones, R. Lv, M. Terrones, et al., Rep. Prog. Phys. 75, 062501 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. D. W. Boukhvalov and M. I. Katsnelson, Nano Lett. 8, 4373 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. A. V. Krasheninnikov and R. M. Nieminen, Theor. Chem. Acc. 129, 625 (2011).

    Article  CAS  Google Scholar 

  34. S. Wang, X. Ke, W. Zhang, et al., Appl. Surf. Sci. 292, 488 (2014).

    Article  CAS  Google Scholar 

  35. J. J. P. Stewart, MOPAC2016, Version 16.158W. http://OpenMOPAC.net/.

  36. N. A. Lvova and O. Yu. Ananina, Russ. J. Phys. Chem. A 87, 1515 (2013).

    Article  CAS  Google Scholar 

  37. N. A. Lvova and O. Yu. Ananina, Comput. Mater. Sci. 115, 11 (2016).

    Article  CAS  Google Scholar 

  38. N. A. Lvova, O. Yu. Ananina, and A. I. Ryazanova, Comput. Mater. Sci. 124, 30 (2016).

    Article  CAS  Google Scholar 

  39. N. Lvova, A. Ryazanova, O. Ananina, and A. Yemelianova, Diamond Relat. Mater. 75, 110 (2017).

    Article  CAS  Google Scholar 

  40. O. Ponomarev, N. Lvova, and A. Ryazanova, Surf. Innov. 6, 71 (2018).

    Google Scholar 

  41. M. A. Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano. Res. 4, 143 (2011).

    Article  CAS  Google Scholar 

  42. A. A. El-Barbary, R. H. Telling, C. P. Ewels, et al., Phys. Rev. B 68, 144107 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the Studies of Nanostructured, Carbon, and Superhard Materials shared resource center supported by the RF Ministry of Education and Science, agreement nos. 14.593.21.0007 and ID RFMEFI59317X0007 of August 28, 2017.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. Annenkov, N. A. Lvova or D. O. Popkov.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annenkov, M.R., Lvova, N.A. & Popkov, D.O. Interaction between Fluorine and Graphene Vacancy Defects. Russ. J. Phys. Chem. 93, 889–894 (2019). https://doi.org/10.1134/S0036024419050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419050029

Keywords:

Navigation