Skip to main content
Log in

Acrylic Acid and Methacrylic Acid Based Microgel Catalysts for Reduction of 4-Nitrophenol

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

N-isopropylacrylamide (NIPAM) monomer is copolymerized with acrylic acid (AA) and methacrylic acid (MAA) to synthesize poly-N-isopropylacrylamide-acrylic acid) [P(NIPAM-AA)] and poly(N-isopropylacrylamide-methacrylic acid) [P(NIPAM-MAA)] microgels. Both of these microgels possess same mol percentage of monomer and co-monomer. In order to study the influence of nature of co-monomer on size of in-situ synthesized nanoparticles, silver ions are reduced within these microgels under same conditions. The prepared samples are analyzed by Fourier transform infrared microscopy (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS) and UV‒Vis spectroscopy. Synthesized hybrid microgels are used as catalysts for reduction of 4-nitrophenol under same conditions to investigate the influence of nature of co-monomer on apparent rate constant (kapp) of catalysis. Effect of various catalyst dosages on value of kapp is also studied. It is observed that value of kapp does not linearly increase with increase in catalyst dosage but it follows a different pattern. The dependences of dosages of both hybrid microgels on kapp are also compared. The effect of dosages of both catalysts on reaction time and catalysis duration is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. Ma, K. Suematsu, M. Yuasa, T. Kida, and K. Shimanoe, ACS Appl. Mater. Interface 7, 5863 (2015).

    Article  CAS  Google Scholar 

  2. Y. Mei, Y. Lu, F. Polzer, M. Ballauff, and M. Drechsler, Chem. Mater. 19, 1062 (2007).

    Article  CAS  Google Scholar 

  3. H. Shi, K. Yu, F. Sun, and Z. Zhu, Cryst. Eng. Commun. 14, 278 (2012).

    Article  CAS  Google Scholar 

  4. M. R. S. A. Janjua, S. Jamil, N. Jahan, S. R. Khan, and S. Mirza, Chem. Centr. J. 11, 49 (2017).

    Article  Google Scholar 

  5. S. Jamil, M. R. S. A. Janjua, S. R. Khan, and N. Jahan, Mater. Res. Express 4, 015902 (2017).

    Article  CAS  Google Scholar 

  6. D. Ling, N. Lee, and T. Hyeon, Acc. Chem. Res. 48, 1276 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. E. Kirubha, K. Vishista, and P. Palanisamy, Appl. Nanosci. 5, 777 (2015).

    Article  CAS  Google Scholar 

  8. I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, Appl. Surf. Sci. 336, 157 (2015).

    Article  CAS  Google Scholar 

  9. S. Jamil, M. R. S. A. Janjua, and S. R. Khan, Austral. J. Chem. 70, 908 (2017).

    Article  CAS  Google Scholar 

  10. Y. S. Jeong, J. B. Park, H. G. Jung, J. Kim, X. Luo, J. Lu, L. Curtiss, K. Amine, Y.-K. Sun, and B. Scrosati, Nano Lett. 15, 4261 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Y. Guo, D. Gu, Z. Jin, P. P. Du, R. Si, J. Tao, W. Q. Xu, Y. Y. Huang, S. Senanayake, and Q.-S. Song, Nanoscale 7, 4920 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. X. Du, J. He, J. Zhu, L. Sun, and S. An, Appl. Surf. Sci. 258, 2717 (2012).

    Article  CAS  Google Scholar 

  13. M. Ajmal, M. Siddiq, N. Aktas, and N. Sahiner, RSC Adv. 5, 43873 (2015).

  14. L. Q. Yang, M. M. Hao, H. Y. Wang, and Y. Zhang, Colloid. Polym. Sci. 293, 2405 (2015).

    Article  CAS  Google Scholar 

  15. S. U. Rehman, M. Siddiq, H. Al-Lohedan, and N. Sahiner, Chem. Eng. J. 265, 201 (2015).

  16. R. M. Anderson, L. Zhang, D. Wu, S. R. Brankovic, G. Henkelman, and R. M. Crooks, J. Electrochem. Soc. 163, H3061 (2016).

    Article  CAS  Google Scholar 

  17. J. N. Reek, S. Arevalo, R. van Heerbeek, and P. C. Kamer, and P. W. van Leeuwen, Adv. Catal. 49, 71 (2006).

    CAS  Google Scholar 

  18. A. Maestro, O. S. Deshmukh, F. Mugele, and D. Langevin, Langmuir 31, 6289 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. T. Jain, A. R. Tehrani-Bagha, H. Shekhar, R. Crawford, E. Johnson, K. Nørgaard, K. Holmberg, P. Erhart, and K. Moth-Poulsen, J. Mater. Chem. C 2, 994 (2014).

    Article  CAS  Google Scholar 

  20. B. H. Juarez and L. M. Liz-Marzán, Phys. Chem. 229, 263 (2015).

    CAS  Google Scholar 

  21. A. Burmistrova, M. Richter, M. Eisele, C. Üzüm, and R. von Klitzing, Polymers 3, 1575 (2011).

    Article  CAS  Google Scholar 

  22. A. Burmistrova, M. Richter, C. Uzum, and R. von Klitzing, Colloid. Polym. Sci. 289, 613 (2011).

    Article  CAS  Google Scholar 

  23. Z. Li, T. Chen, J. Nie, J. Xu, Z. Fan, and B. Du, Mater. Chem. Phys. 138, 650 (2013).

    Article  CAS  Google Scholar 

  24. T. Hoare and R. Pelton, Curr. Opin. Colloid Interface Sci. 13, 413 (2008).

    Article  CAS  Google Scholar 

  25. Z. H. Farooqi, S. R. Khan, R. Begum, F. Kanwal, A. Sharif, E. Ahmed, S. Majeed, K. Ejaz, and A. Ijaz, Turkish J. Chem. 39, 96 (2015).

    Article  CAS  Google Scholar 

  26. M. Ajmal, Z. H. Farooqi, and M. Siddiq, Korean J. Chem. Eng. 30, 2030 (2013).

    Article  CAS  Google Scholar 

  27. G. Liu, D. Wang, F. Zhou, and W. Liu, Small 11, 2807 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. L. A. Shah, A. Haleem, M. Sayed, and M. Siddiq, J. Environ. Chem. Eng. 4, 3492 (2016).

    CAS  Google Scholar 

  29. Z. H. Farooqi, S. R. Khan, R. Begum, T. Hussain, and N. Batool, Walailak J. Sci. Technol. 12, 1147 (2015).

    Google Scholar 

  30. Z. H. Farooqi, N. Tariq, R. Begum, S. R. Khan, Z. Iqbal, and A. Khan, Turkish J. Chem. 39, 576 (2015).

    Article  CAS  Google Scholar 

  31. S. R. Khan, Z. H. Farooqi, A. Ali, R. Begum, F. Kanwal, and M. Siddiq, Mater. Chem. Phys. 171, 318 (2016).

    Article  CAS  Google Scholar 

  32. Z. H. Farooqi, Z. Butt, R. Begum, S. R. Khan, A. Sharif, and E. Ahmed, Mater. Sci. Poland 33, 627 (2015).

    Article  Google Scholar 

  33. S. R. Khan, Z. H. Farooqi, M. Ajmal, M. Siddiq, and A. Khan, J. Disp. Sci. Technol. 34, 1324 (2013).

    Article  CAS  Google Scholar 

  34. W. Wei, T. Wang, J. Luo, Y. Zhu, Y. Gu, and X. Liu, Colloids Surf., A 487, 58 (2015).

    Article  CAS  Google Scholar 

  35. A. Dubey and N. A. Burke, and H. D. Stöver, J. Polym. Sci. Part A: Polym. Chem. 53, 353 (2015).

    Article  CAS  Google Scholar 

  36. M. Boularas, E. Deniau-Lejeune, V. Alard, J. F. Tranchant, L. Billon, and M. Save, Polym. Chem. 7, 350 (2016).

    Article  CAS  Google Scholar 

  37. J. Cao, T. Sun, and K. T. Grattan, Sens. Actuators, B 195, 332 (2014).

    Article  CAS  Google Scholar 

  38. N. Sahiner, H. Ozay, O. Ozay, and N. Aktas, Appl. Catal., A 385, 201 (2010).

  39. S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff, J. Phys. Chem. C 114, 8814 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are highly grateful to the Department of Chemistry, University of Agriculture, Faisalabad, Pakistan for assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanza Rauf Khan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanza Rauf Khan, Jamil, S., Li, S. et al. Acrylic Acid and Methacrylic Acid Based Microgel Catalysts for Reduction of 4-Nitrophenol. Russ. J. Phys. Chem. 92, 2656–2664 (2018). https://doi.org/10.1134/S003602441901014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441901014X

Keywords:

Navigation