Skip to main content
Log in

Eco-Friendly In Situ Fabrication of Reduced Graphene Oxide Gold Nanocomposites for Catalysis and Dye Degradation

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The invention represents a development of robust eco-friendly method use for water waste management and polluted water. The inadvertent role of peanut peels extract helps to simultaneously convert and form reduced graphene oxide gold nanocomposite (rGO@AuNCs) in single step. Fabricated nanocomposite was evaluated for its catalytic performance using reduction of 4-nitrophenol to 4-aminophenol as well as elimination of methylene blue (MB) and malachite green (MG) dyes from water. Graphene oxide (GO) and rGO@AuNCs, were synthesized using simplified approaches and preliminary characterization was done using UV–Vis spectrophotometer and Fourier transform infrared spectroscopy. Least concentration of rGO@AuNCs is required to eliminate MB and MG around 77 and 93%, respectively. Furthermore, surface morphology and elemental analysis of rGO@AuNCs confirm successful fabrication methods as well as X‑ray diffraction pattern confirms the crystalline behavior of nanocomposite. The study illustrates an environment-friendly and cost effective in situ fabrication rGO@AuNCs from industrial agro waste for an environmental remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. Chen, H. Feng and J. Li, Chem. Rev. 112, 6027 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. B. Paulchamy, G. Arthi, and B. Lignesh, J. Nanomed. Nanotechnol. 6, 253 (2015).

    Google Scholar 

  3. P. H. C. Camargo, K. G. Satyanarayana, and F. Wypych, Mater. Res. 12, 1 (2009).

    Article  CAS  Google Scholar 

  4. T. Wu, L. Zhang, J. Gao, Y. Liu, and C. Gao, J. Mater. Chem. A 1, 7384 (2013).

    Article  CAS  Google Scholar 

  5. Z. Wang, C. Xu, G. Gao, and X. Li, RSC Adv. 4, 13644 (2014).

  6. S. P. Lonkar and A. A. Abdala, J. Thermodyn. Catal. 5 (2), 1 (2014).

    Google Scholar 

  7. R. R. Mishra, R. Chandran, and S. S. Khan, RSC Adv. 4, 51787 (2014).

  8. J. Pasupuleti, S. N. Nigam, M. K. Pandey, P. Nagesh, and R. K. Varshney, Front Plant Sci. 4, 23 (2013).

    Google Scholar 

  9. P. Bharthare, P. Shrivastava, P. Singh, and A. Ttiwari, Int. J. Adv. Res. 2, 1 (2014).

    Google Scholar 

  10. R. Radhakrishnan, S. B. Pae, B. K. Lee, and I. Y. Baek, Afr. J. Biotechnol. 12, 4477 (2013).

    Article  CAS  Google Scholar 

  11. M. A. Usman, I. Momohjimoh, and A. S. Gimba, J. Miner. Mater. Charact. Eng. 4, 228 (2016).

    CAS  Google Scholar 

  12. D. Yan, H. Zhang, L. Chen, G. Zhu, Z. Wang, H. Xu, and A. Yuc, RSC Adv. 4, 23649 (2014).

  13. M. K. Satapathy, P. Banerjee, and P. Das, Appl. Nanosci. 5, 1 (2015).

    Article  CAS  Google Scholar 

  14. A. A. Bazrafshan, S. Hajati, and M. Ghaedi, RSC Adv. 5, 79119 (2015).

  15. R. K. Upadhyay, N. Soin, and S. S. Roy, RSC Adv. 4, 3823 (2014).

  16. P. O. Patil, P. V. Bhandari, P. K. Deshmukh, S. S. Mahale, A. G. Patil, H. R. Bafna, K. V. Patel, and S. B. Bari, Res. Chem. Intermediat. 43, 3757 (2017).

    Article  CAS  Google Scholar 

  17. N. Burham, A. Mamdouh, and M. El-Sahat, Int. J. Adv. Res. 2, 755 (2014).

    Google Scholar 

  18. M. S. Gokhale and C. Kokate, Practical Pharmacognosy (Pragati Books, Mumbai, 2008).

    Google Scholar 

  19. M. K. Chuang, S. W. Lin, F. C. Chen, C. W. Chu, and C. S. Hsu, Nanoscale 6, 1573 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. X. Weng, L. Huang, Z. Chen, M. Megharaj, and R. Naidu, Ind. Crop. Prod. 51, 342 (2013).

    Article  CAS  Google Scholar 

  21. M. Li and G. Chen, Nanoscale 5, 11919 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. K. J. Jeon and Z. Lee, Chem. Commun. 47, 3610 (2011).

    Article  CAS  Google Scholar 

  23. M. Iliut, C. Leordean, V. Canpean, C. M. Teodorescu, and S. Astilean, J. Mater. Chem. C 1, 4094 (2013).

    Article  CAS  Google Scholar 

  24. S. Bai and X. Shen, RSC Adv. 2, 64 (2012).

  25. H. Zhang, D. Hines, and D. L. Akins, Dalton Trans. 43, 2670 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. N. Karousis, N. Tagmatarchis, and D. Tasis, Chem. Rev. 110, 5366 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are thankful to Management, Principal, SES, H.R. Patel Institute of Pharmaceutical Education and Research, Shirpur for providing necessary facilities to do research work effectively. Authors are also thankful for North Maharashtra University, Jalgoan for their kind support in analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin O. Patil.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.O., Mahale, S.S., More, M.P. et al. Eco-Friendly In Situ Fabrication of Reduced Graphene Oxide Gold Nanocomposites for Catalysis and Dye Degradation. Russ. J. Phys. Chem. 92, 2750–2756 (2018). https://doi.org/10.1134/S003602441813023X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441813023X

Keywords:

Navigation