Skip to main content
Log in

Dependence of the Thermodynamic Characteristics of a Carbon Monoxide–Ethylene–Butene-1 Copolymer on the Concentration of Butane Fragments in the Macromolecules

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The heat capacity, temperatures and enthalpies of the physical transformations of a triple alternating copolymer of carbon monoxide with ethylene and butene-1 with a 46 mol % concentration of butane fragments are studied via adiabatic and differential scanning calorimetry in the region of 6−570 K. Its combustion energy in a condensed state at T = 298.15 K is measured calorimetrically. Standard thermodynamic functions of the copolymer in the region of T → 0 to 400 K and the thermodynamic characteristics of its formation at T = 298.15 K and synthesis within the range of T → 0 to 400 K are calculated. The dependences of the thermodynamic properties of the copolymer on the concentration of butane fragments in the macromolecules are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. P. Belov and E. V. Novikova, Russ. Chem. Rev. 73, 267 (2004).

    Article  CAS  Google Scholar 

  2. P. C. Zehetmaier, S. I. Vagin, and B. Rieger, MRS Bull. 38, 239 (2013).

    Article  CAS  Google Scholar 

  3. B. J. Lommerts, PhD Thesis (Univ. Groningen, Groningen, 1994).

  4. W. Reppe, US Patent No. 2577208 (1951).

  5. D. V. Anokhin, V. M. Neverov, S. N. Chvalun, N. P. Bessonova, Yu. K. Godovsky, F. Hollmann, U. Meier, and B. Rieger, Polymer Sci., Ser. A 46, 52 (2004).

    Google Scholar 

  6. B. V. Lebedev, K. B. Zhogova, Ya. V. Denisova, G. P. Belov, and O. N. Golodkov, Russ. Chem. Bull. 47, 277 (1998).

    Article  CAS  Google Scholar 

  7. B. V. Lebedev, A. V. Tsvetkova, N. N. Smirnova, G. P. Belov, O. N. Golodkov, and Yu. A. Kurskii, Russ. Chem. Bull. 48, 1507 (1999).

    Article  CAS  Google Scholar 

  8. A. V. Arapova, B. V. Lebedev, N. N. Smirnova, T. G. Kulagina, G. P. Belov, and O. N. Golodkov, Russ. Chem. Bull. 50, 2372 (2001).

    Article  CAS  Google Scholar 

  9. T. A. Bykova, N. N. Smirnova, G. P. Belov, et al., Vysokomol. Soedin., Ser. A 46 (2), 1 (2004).

    Google Scholar 

  10. T. A. Bykova, N. N. Smirnova, T. G. Kulagina, L. V. Nikishchenkova, G. P. Belov, and E. V. Novikova, Russ. Chem. Bull. 54, 1527 (2005).

    Article  CAS  Google Scholar 

  11. N. N. Smirnova, L. V. Nikishchenkova, T. A. Bykova, et al., Thermochim. Acta 451, 156 (2006).

    Article  CAS  Google Scholar 

  12. N. N. Smirnova, L. Ya. Tsvetkova, A. V. Markin, O. N. Golodkov, L. Ya. Tsvetkova, A. V. Markin, P. D. Afonin, and G. P. Belov, Russ. J. Phys. Chem. A 89, 351 (2015).

    Article  CAS  Google Scholar 

  13. N. N. Smirnova, O. N. Golodkov, A. V. Markin, L. Ya. Tsvetkova, P. D. Afonin, O. N. Smirnova, E. A. Zakharychev, and G. P. Belov, Russ. Chem. Bull. 65, 75 (2016).

    Article  CAS  Google Scholar 

  14. P. D. Afonin, N. N. Smirnova, A. V. Markin, et al., Vest. YuUrGU, Ser. Khim. 8 (2), 29 (2016).

    Google Scholar 

  15. P. D. Afonin, N. N. Smirnova, A. V. Markin, et al., Vest. YuUrGU, Ser. Khim. 8 (4), 45 (2016).

    Google Scholar 

  16. K. A. Alferov, O. M. Chukanova, M. L. Bubnova, E. O. Perepelitsina, V. A. Lesnichaya, and G. P. Belov, Polymer Sci., Ser. A 55, 706 (2013).

    Article  CAS  Google Scholar 

  17. GOST (State Standard) No. 9.049-91 (Izd-vo Standartov, Moscow, 1992), p. 13.

  18. V. M. Malyshev, G. A. Mil’ner, E. L. Sorokin, et al., Prib. Tekh. Eksp., No. 6, 195 (1985).

  19. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).

    Article  CAS  Google Scholar 

  20. G. W. Hohne, W. F. Hemminger, and H. F. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, Heidelberg, 2003).

    Book  Google Scholar 

  21. V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).

    Article  CAS  Google Scholar 

  22. V. P. Kolesov, Principles of Thermochemistry (Mosk. Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  23. K. V. Kir’yanov and V. I. Tel’noi, in Works on Chemistry and Chemical Technology, Interschool Collection (Gork. Gos. Univ., Gorky, 1975), No. 4, p. 109 [in Russian].

  24. E. W. Washburn, J. Res. Past Papers 10, 525 (1933).

    CAS  Google Scholar 

  25. W. E. Huhn, F. Hollmann, S. Hild, et al., Macromol. Mater. Eng. 283, 115 (2000).

    Article  CAS  Google Scholar 

  26. S. Alford and M. Dole, J. Am. Chem. Soc. 77, 4774 (1955).

    Article  CAS  Google Scholar 

  27. A. B. Bestul and S. S. Chang, J. Chem. Phys. 40, 3781 (1964).

    Article  Google Scholar 

  28. W. Kauzmann, Chem. Rev. 43, 218 (1948).

    Article  Google Scholar 

  29. A. J. Waddon and N. R. Karttunnen, Macromolecules 35, 4003 (2002).

    Article  CAS  Google Scholar 

  30. A. J. Waddon, N. R. Karttunnen, and A. J. Lesser, Macromolecules 32, 423 (1999).

    Article  CAS  Google Scholar 

  31. B. V. Lebedev, Thermochim. Acta 297, 143 (1997).

    Article  CAS  Google Scholar 

  32. J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1984), Vol. 1.

    Google Scholar 

  33. M. W. Chase, J. Phys. Chem. Ref. Data: Monograph, No. 9 (1998).

  34. C. J. Egan and J. D. Kemp, J. Am. Chem. Soc. 59, 1264 (1937).

    Article  CAS  Google Scholar 

  35. K. A. Kobe and R. E. Lynn, Chem. Rev. 52, 117 (1953).

    Article  CAS  Google Scholar 

  36. K. Takeda, O. Yamamuro, and H. Suga, J. Phys. Chem. Solids 52, 607 (1991).

    Article  CAS  Google Scholar 

  37. N. N. Smirnova, L. V. Nikishenkova, and G. P. Belov, in Proceedings of the 17th International Conference on Chemical Thermodynamics in Russia RCCT-2009, Kazan, 2009, Vol. 1, p. 199.

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.M. Chukanova for providing the sample of copolymer used in our calorimetric measurements. This work was performed as part of State Task no. 4.6138.2017/6.7, “Leading Researchers,” from the RF Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Smirnova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, P.D., Smirnova, N.N., Markin, A.V. et al. Dependence of the Thermodynamic Characteristics of a Carbon Monoxide–Ethylene–Butene-1 Copolymer on the Concentration of Butane Fragments in the Macromolecules. Russ. J. Phys. Chem. 92, 1645–1653 (2018). https://doi.org/10.1134/S0036024418090029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418090029

Keywords:

Navigation