Skip to main content
Log in

Self-Assembly of Supramolecular Aggregates Based on Sector- and Cone-Shaped Dendrons and Bolaamphiphiles

  • To the 100Th Anniversary of the Karpov Institute of Physical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Using a number of classes of such sector-shaped macromolecules as derivatives of 2,3,4- and 3,4,5- tri(dodecyloxy)benzenesulfonic acid and dendrimers based on gallic acid as an example, the main stages in the formation of supramolecular ensembles are considered: the formation of individual supramolecular aggregates due to the weak noncovalent interactions of mesogenic groups, and the subsequent ordering within these aggregates, which lowers the free energy of a system. Supramolecular aggregates are in turn organized into two- or three-dimensional supramolecular lattices. It is shown that the shape of the supramolecular aggregates and its change along with temperature are functions of the chemical structure of the mesogenic group (resulting in the controlled design of complex self-organizing systems with a given response to external stimuli).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Matsen and F. S. Bates, Macromolecules 29, 1091 (1996).

    Article  CAS  Google Scholar 

  2. L. Leibler, Macromolecules 13, 1602 (1980).

    Article  CAS  Google Scholar 

  3. M. W. Matsen and F. S. Bates, Macromolecules 29, 7641 (1996).

    Article  CAS  Google Scholar 

  4. S. N. Chvalun, M. A. Shcherbina, I. V. Bykova, J. Blackwell, V. Percec, Y. K. Kwon, and J. D. Cho, Polymer Sci., Ser. A 43, 33 (2001).

    Google Scholar 

  5. U. Beginn, L. Yan, S. N. Chvalun, M. A. Scherbina, et al., Liq. Cryst. 35, 1073 (2008).

    Article  CAS  Google Scholar 

  6. I. S. Antipin, E. Kh. Kazakova, A. R. Mustafina, and A. T. Gubaidullin, Ross. Khim. Zh. 43 (3–4), 35 (1999).

    Google Scholar 

  7. Y.-K. Kwon, C. Danko, S. N. Chvalun, J. Blackwell, et al., Macromol. Symp. 87, 103 (1994).

    Article  CAS  Google Scholar 

  8. Y.-K. Kwon, S. N. Chvalun, A.-I. Schneider, J. Blackwell, et al., Macromolecules 27, 6129 (1994).

    Article  CAS  Google Scholar 

  9. Y.-K. Kwon, S. N. Chvalun, J. Blackwell, V. Percec, and J. A. Heck, Macromolecules 28, 1552 (1995).

    Article  CAS  Google Scholar 

  10. S. N. Chvalun, Y.-K. Kwon, J. Blackwell, and V. Percec, Polymer Sci., Ser. A 38, 1298 (1996).

    Google Scholar 

  11. S. N. Chvalun, J. Blackwell, Y.-K. Kwon, and V. Percec, Macromol. Symp. 118, 663 (1997).

    Article  CAS  Google Scholar 

  12. S. N. Chvalun, J. Blackwell, J. D. Cho, Y.-K. Kwon, et al., Polymer 39, 4515 (1998).

    Article  CAS  Google Scholar 

  13. S. N. Chvalun, J. Blackwell, J. D. Cho, I. V. Bykova, and V. Percec, Acta Polym. 50, 50 (1999).

    Article  Google Scholar 

  14. V. Percec, J. Heck, D. Tomazos, F. Falkenberg, et al., J. Chem. Soc., Perkin Trans. 1, No. 22, 2799 (1993).

    Article  Google Scholar 

  15. V. Percec, G. Johansson, J. Heck, G. Ungar, and S. V. Batty, J. Chem. Soc., Perkin Trans. 1, No. 13, 1411 (1993).

    Article  Google Scholar 

  16. V. Percec, J. Heck, G. Johansson, and D. Tomazos, Macromol. Symp. 77, 237 (1994).

    Article  CAS  Google Scholar 

  17. Lord Rayleigh, Philos. Mag. 34, 177 (1892).

  18. B. Barriere, K. Sekimoto, and L. Leibler, J. Chem. Phys. 105, 1735 (1996).

    Article  CAS  Google Scholar 

  19. S. N. Chvalun, M. A. Shcherbina, I. V. Bykova, J. Blackwell, and V. Percec, Polymer Sci., Ser. A 44, 1281 (2002).

    Google Scholar 

  20. M. E. Vigild, K. Almdal, K. Mortensen, I. W. Hamley, et al., Macromolecules 31, 5702 (1998).

    Article  CAS  Google Scholar 

  21. S. Förster, A. K. Khandpur, J. Zhao, F. S. Bates, et al., Macromolecules 27, 6922 (1994).

    Article  Google Scholar 

  22. S. N. Chvalun, M. A. Shcherbina, A. N. Yakunin, J. Blackwell, and V. Percec, Polymer Sci., Ser. A 49, 158 (2007).

    Article  Google Scholar 

  23. M. A. Shcherbina, A. V. Bakirov, A. N. Yakunin, V. Percec, U. Beginn, M. Müller, and S. N. Chvalun, Crystallogr. Rep. 57, 151 (2012).

    Article  CAS  Google Scholar 

  24. G. Ungar, Y. Liu, X. B. Zeng, V. Percec, and W.-D. Cho, Science (Washington, D.C.) 299, 1208 (2003).

    Article  CAS  Google Scholar 

  25. V. Percec, M. N. Holerca, S. Uchida, W.-D. Cho, et al., Chem.-Eur. J. 8, 1106 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. V. Percec, C. M. Mitchell, W.-D. Cho, S. Uchida, et al., J. Am. Chem. Soc. 126, 6078 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. D. J. P. Yeardley, G. Ungar, V. Percec, et al., J. Am. Chem. Soc. 122, 1684 (2000).

    Article  CAS  Google Scholar 

  28. H. Duan, S. D. Hudson, G. Ungar, M. N. Holerca, and V. Percec, Chem.-Eur. J. 7, 4134 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. V. S. K. Balagurusamy, G. Ungar, V. Percec, and G. Johanson, J. Am. Chem. Soc. 119, 1539 (1997).

    Article  CAS  Google Scholar 

  30. S. D. Hudson, H.-T. Jung, V. Percec, W.-D. Cho, et al., Science (Washington, D.C.) 278, 449 (1997).

    Article  CAS  Google Scholar 

  31. K. Borisch, S. Diele, P. Goring, H. Kresse, and C. Tschierske, Angew. Chem. 36, 2087 (1997).

    Article  CAS  Google Scholar 

  32. K. Borisch, C. Tschierske, P. Goring, and S. Diele, Chem. Commun., 2711 (1998).

    Google Scholar 

  33. L. Gehringer, C. Bourgogne, D. Guillon, and B. Donnio, J. Am. Chem. Soc. 126, 3856 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. M. A. Shcherbina, S. N. Chvalun, and V. Percec, Polymer Sci., Ser. A 50, 166 (2008).

    Google Scholar 

  35. M. A. Shcherbina, A. V. Bakirov, L. Yan, U. Beginn, et al., Mendeleev Commun. 25, 142 (2015).

    Article  CAS  Google Scholar 

  36. M. A. Shcherbina, A. V. Bakirov, A. N. Yakunin, U. Beginn, et al., Soft Matter 10, 1746 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. X. Zhu, M. A. Scherbina, A. V. Bakirov, B. Gorzolnik, et al., Chem. Mater. 18, 4667 (2006).

    Article  CAS  Google Scholar 

  38. A. V. Bakirov, A. N. Yakunin, M. A. Shcherbina, S. N. Chvalun, X. Zhu, U. Beginn, and M. Möller, Nanotechnol. Russ. 5, 762 (2010).

    Article  Google Scholar 

  39. M. A. Shcherbina, A. V. Bakirov, U. Beginn, L. Yan, et al., Chem. Commun. 53, 10070 (2017).

    Article  CAS  Google Scholar 

  40. X. H. Cheng, M. Prehm, M. K. Das, J. Kain, et al., J. Am. Chem. Soc. 125, 10977 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. B. Chen, X. B. Zeng, U. Baumeister, G. Ungar, and C. Tschierske, Science (Washington, D.C.) 307, 96 (2005).

    Article  CAS  Google Scholar 

  42. B. Grünbaum and G. C. Shephard, Tilings and Patterns (W. H. Freeman, New York, 1987).

    Google Scholar 

  43. M. A. Shcherbina, S. N. Chvalun, S. A. Ponomarenko, and M. V. Koval’chuk, Russ. Chem. Rev. 83, 1091 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Shcherbina.

Additional information

Original Russian Text © M.A. Shcherbina, S.N. Chvalun, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 6, pp. 987–995.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbina, M.A., Chvalun, S.N. Self-Assembly of Supramolecular Aggregates Based on Sector- and Cone-Shaped Dendrons and Bolaamphiphiles. Russ. J. Phys. Chem. 92, 1171–1179 (2018). https://doi.org/10.1134/S0036024418060171

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418060171

Keywords

Navigation