Skip to main content
Log in

Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M–xNiyCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M–10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M–NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Zhou, J. N. Beltramini, Y. X. Fan, et al., Chem. Soc. Rev. 37, 527 (2008).

    Article  Google Scholar 

  2. D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, Chem. Soc. Rev. 41, 8075 (2012).

    Article  CAS  Google Scholar 

  3. J. N. Chheda, G. W. Huber, and J. A. Dumesic, Angew. Chem. Int. Ed. Engl. 46, 7164 (2007).

    Article  CAS  Google Scholar 

  4. R. Rinaldi and F. Schüth, Energ. Environ. Sci. 2, 610 (2009).

    Article  CAS  Google Scholar 

  5. C. J. Yue, Q. J. Zhang, L. P. Gu, et al., Asia-Pacif. J. Chem. Eng. 9, 581 (2014).

    CAS  Google Scholar 

  6. Y. Li, Y. Liao, X. Cao, et al., Biomass Bioenerg. 74, 148 (2015).

    Article  CAS  Google Scholar 

  7. R. Palkovits, K. Tajvidi, J. Procelewska, et al., Green Chem. 12, 972 (2010).

    Article  CAS  Google Scholar 

  8. A. M. Ruppert, K. Weinberg, and R. Palkovits, Angew. Chem. Int. Ed. Engl. 51, 2564 (2012).

    Article  CAS  Google Scholar 

  9. X. Guo, J. Guan, B. Li, et al., Sci. Rep. 5, 1 (2015).

    Google Scholar 

  10. D. K. Sohounloue, C. Montassier, and J. Barbier, React. Kinet. Catal. Lett. 22, 391 (1983).

    Article  CAS  Google Scholar 

  11. I. T. Clark, Ind. Eng. Chem. 50, 1125 (1958).

    Article  CAS  Google Scholar 

  12. K. Wang, M. C. Hawley, and T. D. Furney, Ind. Eng. Chem. Res. 34, 3766 (1995).

    Article  CAS  Google Scholar 

  13. L. Zhao, J. H. Zhou, Z. J. Sui, et al., Chem. Eng. Sci. 65, 30 (2010).

    Article  CAS  Google Scholar 

  14. X. Wang, X. Liu, Y. Xu, et al., Chin. J. Catal. 36, 1614 (2015).

    Article  CAS  Google Scholar 

  15. M. Banu, P. Venuvanalingam, R. Shanmugam, et al., Top. Catal. 55, 897 (2012).

    Article  CAS  Google Scholar 

  16. W. Du, L. Zheng, J. Shi, et al., Fuel Process Technol. 139, 86 (2015).

    Article  CAS  Google Scholar 

  17. W. Du, L. Zheng, X. Li, et al., Appl. Clay Sci. 123, 166 (2016).

    Article  CAS  Google Scholar 

  18. X. Chen, X. Wang, S. Yao, et al., Catal. Commun. 39, 86 (2013).

    Article  CAS  Google Scholar 

  19. M. Banu, S. Sivasanker, T. M. Sankaranarayanan, et al., Catal. Commun. 12, 673 (2011).

    Article  CAS  Google Scholar 

  20. L. Ye, X. Duan, H. Lin, et al., Catal. Today 183, 65 (2012).

    Article  CAS  Google Scholar 

  21. S. M. Morris, P. F. Fulvio, and M. Jaroniec, J. Am. Chem. Soc. 130, 15210 (2008).

    Article  CAS  Google Scholar 

  22. L. Xu, H. Song, and L. Chou, Catal. Sci. Technol. 1, 1032 (2011).

    Article  CAS  Google Scholar 

  23. L. Xu, Z. Miao, H. Song, et al., Int. J. Hydrogen Energ. 39, 3253 (2014).

    Article  CAS  Google Scholar 

  24. N. Wang, Z. Xu, J. Deng, et al., ChemCatChem 6, 1470 (2014).

    CAS  Google Scholar 

  25. X. Yang, J. Da, H. Yu, et al., Fuel 179, 353 (2016).

    Article  CAS  Google Scholar 

  26. J. Zhou, G. Liu, Z. Sui, et al., Chin. J. Catal. 35, 692 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, J., Qin, J. et al. Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols. Russ. J. Phys. Chem. 92, 456–465 (2018). https://doi.org/10.1134/S0036024418030378

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030378

Keywords

Navigation