Skip to main content
Log in

DFT Study of PH3 Physisorption and Chemisorptions on Boron Nitride Nanotubes

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The adsorption of PH3 molecules on the NiB,N-doped(4,4) and (5,5) BNNTS surfaces has been investigated using density functional theory (DFT). The adsorption energies, geometric and electronic structures of the adsorbed systems were studied to judge the possible application of NiB,N-doped BNNTS in PH3 monitoring systems. Our calculated results showed that NiB,N-doped BNNTS had much higher adsorption energy and shorter binding distances than pure BNNTS owning to chemisorptions of the PH3 molecule. The obtained density of states (DOS) and frontier orbitals demonstrated that the orbital hybridization was obvious between the PH3 molecule and NiB,N-doped BNNTS. However, due to weak physisorption according to the total electron density maps, there was no evidence for hybridization between PH3 molecule and pure BNNTS. It was shown that after doping of Ni atom, the primary symmetry of BNNTS decreased which enhanced the chemical activity of BNNTS towards PH3 molecules. According to the obtained results, we highlight the high potential application of NiB,N-doped BNNTS in the design and fabrication of PH3 sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994).

    Article  CAS  Google Scholar 

  3. N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995).

    Article  CAS  Google Scholar 

  4. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS Nano 4, 2979 (2010).

    Article  CAS  Google Scholar 

  5. C. Zhi, Y. Bando, C. Tang, and D. Golberg, Mater. Sci. Eng. R 70, 92 (2010).

    Article  Google Scholar 

  6. R. Arenal, O. Stephan, M. D. Kociak, A. L. Taverna, and C. Colliex, Phys. Rev. Lett. 95, 127601 (2005).

    Article  CAS  Google Scholar 

  7. J. Wang, V. K. Kayastha, Y. K. Yap, Z. Fan, J. G. Lu, Z. Pan, I. N. Ivanov, A. A. Puretzky, and B. Geohegan, Nano Lett. 5, 2528 (2005).

    Article  CAS  Google Scholar 

  8. M. J. Kim, S. Chatterjee, S. M. Kim, E. A. Stach, M. G. Bradley, M. J. Pender, L. G. Sneddon, and B. Maruyama, Nano Lett. 8, 3298 (2008).

    Article  CAS  Google Scholar 

  9. W. An, X. Wu, J. L. Yang, and X. C. Zeng, J. Phys. Chem. C 111, 14105 (2007).

    Article  CAS  Google Scholar 

  10. Y. Li, Z. Zhou, D. Golberg, Y. Bando, P. R. Schleyer, and Z. Chen, J. Phys. Chem. C 112, 1365 (2008).

    Article  CAS  Google Scholar 

  11. G. Kim, J. Park, and S. Hong, Chem. Phys. Lett. 522, 79 (2012).

    Article  CAS  Google Scholar 

  12. K. H. He, G. Zheng, G. Chen, M. Wan, and G. F. Ji, Physica B 403, 4213 (2008).

    Article  CAS  Google Scholar 

  13. X. Wu, W. An, and X. C. Zeng, J. Am. Chem. Soc. 128, 12001 (2006).

    Article  CAS  Google Scholar 

  14. R. Wang, R. Zhu, and D. Zhang, Chem. Phys. Lett. 467, 131 (2008).

    Article  CAS  Google Scholar 

  15. Y. K. Chen, L. V. Liu, and Y. A. Wang, J. Phys. Chem. C 114, 12382 (2010).

    Article  CAS  Google Scholar 

  16. J. M. Zhang, S. F. Wang, L. Y. Chen, K. W. Xu, and V. Ji, Eur. Phys. J. B 76, 289 (2010).

    Article  CAS  Google Scholar 

  17. X. M. Li, W. Q. Tian, X. R. Huang, C.C. Sun, and L. Jiang, J. Mol. Struct.: THEOCHEM 901, 103 (2009).

    Article  CAS  Google Scholar 

  18. J. W. Zheng, L. P. Zhang, and P. Wu, J. Phys. Chem. C 114, 5792 (2010).

    Article  CAS  Google Scholar 

  19. M. T. Baei, Monatsh. Chem. 143, 989 (2012).

    Article  CAS  Google Scholar 

  20. H. Choi, Y. C. Park, Y. H. Kim, and Y. Sup, J. Am. Chem. Soc. 133, 2084 (2011).

    Article  CAS  Google Scholar 

  21. Y. Xie, Y. P. Huo, and J. M. Zhang, Appl. Surf. Sci. 258, 6391 (2012).

    Article  CAS  Google Scholar 

  22. Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, and C. C. Sun, J. Mol. Struct.: THEOCHEM 948, 83 (2010).

    Article  CAS  Google Scholar 

  23. A. A. Peyghan, A. Soltani, A. A. Pahlevani, Y. Kanani, and S. Khajeh, Appl. Surf. Sci. 270, 25 (2013).

    Article  CAS  Google Scholar 

  24. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, and A. Ahmadi, Microelectron. J. 42, 1400 (2011).

    Article  CAS  Google Scholar 

  25. J. X. Zhao and Y. H. Ding, J. Phys. Chem. C 112, 5778 (2008).

    Article  CAS  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Znkrzewski, G. A. Montgomery, Jr., R. E. Startmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, et al., Gaussian 03 (Gaussian Inc., Pittsburgh PA, 1998).

    Google Scholar 

  27. R. Fareghi-Alamdari, R. Hatefipour, M. Rakhshi, and N. Zekri, RSC Adv. 6, 78636 (2016).

    Article  CAS  Google Scholar 

  28. E. Vessally, B. Dehbandi, and L. Edjlali, Russ. J. Phys. Chem. A 90, 1217 (2016).

    Article  CAS  Google Scholar 

  29. R. J. Parr, L. V. Szentpaly, and S. Liu, J. Am. Chem. Soc. 121, 1922 (1999).

    Article  CAS  Google Scholar 

  30. T. Koopmans, Physica 1, 104 (1933).

    Article  CAS  Google Scholar 

  31. J. C. Phillips, Phys. Rev. 123, 420 (1961).

    Article  CAS  Google Scholar 

  32. P. K. Chattaraj, U. Sarkar, and D. R. Roy, Chem. Rev. 106, 2065 (2006).

    Article  CAS  Google Scholar 

  33. K. K. Hazarika, N.C. Baruah, and R. C. Deka, Struct. Chem. 20, 1079 (2009).

    Article  CAS  Google Scholar 

  34. X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, and L. Jiang, J. Mol. Struct.: THEOCHEM 901, 103 (2009).

    Article  CAS  Google Scholar 

  35. P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).

    Article  CAS  Google Scholar 

  36. A. N. Chermahini, A. Teimouri, and H. Farrokhpour, Appl. Surf. Sci. 320, 231 (2014).

    Article  CAS  Google Scholar 

  37. P. Shaoa, X. Y. Kuang, L. P. Ding, J. Yang, and M. M. Zhong, Appl. Surf. Sci. 285, 350 (2013).

    Article  Google Scholar 

  38. R. Wang, R. Zhu, and D. Zhang, Chem. Phys. Lett 467, 131 (2008).

    Article  CAS  Google Scholar 

  39. X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, and L. Jiang, J. Mol. Struct.: THEOCHEM 901, 103 (2009).

    Article  CAS  Google Scholar 

  40. S. S. Li, Semiconductor Physical Electronics, 2nd ed. (Springer, Heidelberg, 2006).

    Book  Google Scholar 

  41. M. T. Baei, A. A. Peyghan, M. Moghimi, and S. Hashemian, J. Clust. Sci. 23, 1119 (2012).

    Article  CAS  Google Scholar 

  42. E. C. Anota and G. H. Cocoletzi, J. Mol. Model. 19, 2335 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mohsennia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshi, M., Mohsennia, M. & Rasa, H. DFT Study of PH3 Physisorption and Chemisorptions on Boron Nitride Nanotubes. Russ. J. Phys. Chem. 92, 540–546 (2018). https://doi.org/10.1134/S0036024418030172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030172

Keywords

Navigation