Skip to main content
Log in

Processes of Molecular Relaxation in Binary Crystalline Systems KNO3–KClO4, KNO3–KNO2, and K2CO3–K2SO4

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The processes of molecular relaxation in binary crystalline systems KNO3–KClO4, KNO3–KNO2, and K2CO3–K2SO4 are studied via differential thermal analysis and Raman spectroscopy. It is found that the relaxation time of the vibrations ν1(A) of anions NO-3 and CO2-3 in systems KNO3–KClO4, KNO3–KNO2, and K2CO3–K2SO4 is less than that in KNO3 and K2CO3, respectively. It is shown that the increased rate of relaxation is explained by an additional relaxation mechanism presented in the system. This mechanism is associated with the excitation of vibrations of anions ClO-4, NO-2, and SO2-4 and the lattice phonons that emerge. It is found that this relaxation mechanism requires correspondence of the frequency difference of these vibrations to the region of sufficiently high density of states of the phonon spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. K. Voron’ko, A. A. Sobol, and V. E. Shukshin, Phys. Solid State 49, 1963 (2007).

    Article  Google Scholar 

  2. A. V. Rakov, Tr. Fiz. Inst. im P. N. Lebedeva, Akad. Nauk SSSR 27, 111 (1964).

    CAS  Google Scholar 

  3. K. A. Valiev and E. N. Ivanov, Sov. Phys. Usp. 16, 1 (1973).

    Article  Google Scholar 

  4. V. E. Pogorelov, A. I. Lizengevich, I. I. Kondilenko, and G. P. Buyan, Sov. Phys. Usp. 22, 270 (1979).

    Article  Google Scholar 

  5. S. A. Kirillov, in Dynamical Properties of Molecules and Condensed Systems, Collection of Articles, Ed. by A. N. Lazarev (Nauka, Leningrad, 1988), p. 190 [in Russian].

    Google Scholar 

  6. D. W. Oxtoby, J. Chem. Phys. 70, 2605 (1978).

    Article  Google Scholar 

  7. K. A. Valiev, Sov. Phys. JETP 13, 1287 (1961).

    Google Scholar 

  8. K. A. Valiev, Opt. Spektrosk. 11, 465 (1961).

    CAS  Google Scholar 

  9. K. Sarka and S. A. Kirillov, Ukr. Fiz. Zh. 26, 1118 (1981).

    CAS  Google Scholar 

  10. M. A. Ivanov, L. B. Kvashina, and M. A. Krivoglaz, Sov. Phys. Solid State 7, 1652 (1965).

    Google Scholar 

  11. M. M. Gafurov and A. R. Aliev, Rasplavy, No. 2, 41 (2000).

    Google Scholar 

  12. A. R. Aliev and M. M. Gafurov, Russ. J. Phys. Chem. A 75, 418 (2001).

    Google Scholar 

  13. A. R. Aliev, M. M. Gafurov, and I. R. Akhmedov, Chem. Phys. Lett. 359, 262 (2002).

    Article  CAS  Google Scholar 

  14. A. R. Aliev, I. R. Akhmedov, M. G. Kakagasanov, Z. A. Aliev, M. M. Gafurov, K. Sh. Rabadanov and A. M. Amirov, Phys. Solid State 59, 752 (2017).

    Article  CAS  Google Scholar 

  15. V. N. Belomestnykh and A. A. Botaki, Sov. Phys. Solid State 34, 137 (1992).

    Google Scholar 

  16. Chemical Encyclopedy (Sov. Entsiklopediya, Moscow, 1990), Vol. 2, pp. 288, 289, 608; Chemical Encyclopedy (Sov. Entsiklopediya, Moscow, 1992), Vol. 3, p. 183 [in Russian].

  17. E. Yu. Tonkov, Phase Diagrams at High Pressures (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  18. D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 55, 1765 (2013).

    Article  Google Scholar 

  19. V. D. Prisyazhnyi and V. I. Snezhkov, Ukr. Khim. Zh. 47, 230 (1981).

    CAS  Google Scholar 

  20. M. H. Brooker and G. N. Papatheodorou, in Advances in Molten Salt Chemistry, Ed. by G. Mamantov (Elsevier, Amsterdam, 1983), Vol. 5, p. 26.

    Google Scholar 

  21. K. Kohlrausch, Ramanspektren (Heyden, New York, 1972).

    Google Scholar 

  22. L. M. Sverdlov, M. A. Kovner, and E. P. Krainov, Vibrational Spectra of Polyatomic Molecules (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  23. The Aldrich Library of Infrared Spectra, 2nd ed., Ed. by C. J. Pouchert (Aldrich Chem. Company Inc., 1978).

  24. V. N. Belomestnykh and E. P. Tesleva, Izv. Tomsk. Politekh. Univ. 307 (6), 11 2004).

    Google Scholar 

  25. D. V. Korabel’nikov and Yu. N. Zhuravlev, Phys. Solid State 58, 1166 (2016).

    Article  Google Scholar 

  26. O. V. Golovko, Extended Abstract of Cand. Sci. (Math. Phys.) Dissertation (Kemerovo State Univ., Kemerovo, 2009).

    Google Scholar 

  27. D. W. James and W. H. Leong, J. Chem. Phys. 49, 5089 (1968).

    Article  CAS  Google Scholar 

  28. W. H. Leong and D. W. James, Aust. J. Chem. 22, 499 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Aliev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliev, A.R., Akhmedov, I.R., Kakagasanov, M.G. et al. Processes of Molecular Relaxation in Binary Crystalline Systems KNO3–KClO4, KNO3–KNO2, and K2CO3–K2SO4. Russ. J. Phys. Chem. 92, 470–474 (2018). https://doi.org/10.1134/S0036024418030020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418030020

Keywords

Navigation