Skip to main content
Log in

Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1–12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium–oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance (rNa–O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem 78, 1643 (2008).

    Article  CAS  Google Scholar 

  2. X. Li, Y. Tu, H. Tian, and H. Agren, J. Chem. Phys. 132, 104505 (2010).

    Article  Google Scholar 

  3. Y. Liu, H. Lu, Y. Wu, T. Hu, and Q. Li, J. Chem. Phys. 132, 124503 (2010).

    Article  Google Scholar 

  4. Y. Wang, H. Yi, H. Li, Q. Dai, Z. Cao, and Y. Lu, Acta Phys. Chim. Sin. 31, 1035 (2015).

    CAS  Google Scholar 

  5. J. Lu, Y. Yu, and Y. Li, Fluid Phase Equilib. 85, 81 (1993).

    Article  CAS  Google Scholar 

  6. Y. Yu, G. Gao, and Y. Li, Fluid Phase Equilib. 173, 23 (2000).

    Article  CAS  Google Scholar 

  7. Y. Yu, G. Gao, J. Daridon, and B. Lagourette, Fluid Phase Equilib. 206, 205 (2003).

    Article  CAS  Google Scholar 

  8. W. Xie and Y. Gao, J. Phys. Chem. Lett. 4, 4247 (2013).

    Article  CAS  Google Scholar 

  9. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).

    Article  CAS  Google Scholar 

  10. P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem. 77, 844 (2007).

    Article  CAS  Google Scholar 

  11. S. Varma and S. B. Rempe, Biophys. Chem. 124, 192 (2006).

    Article  CAS  Google Scholar 

  12. T. Megyes, S. Bálint, T. Grósz, T. Radnai, I. Bakó, and P. Sipos, J. Chem. Phys. 128, 044501 (2008).

    Article  Google Scholar 

  13. T. Megyes, S. Bálint, E. Peter, T. Grósz, I. Bakó, and H. Krienke, J. Phys. Chem. B 113, 4054 (2009).

    Article  CAS  Google Scholar 

  14. Y. Zhou, C. Fang, Y. Fang, F. Zhu, S. Tao, and S. Xu, Russ. J. Phys. Chem. A 86, 1236 (2012).

    Article  Google Scholar 

  15. Y. Zhou, C. Fang, and Y. Fang, Acta Phys. Chim. Sin. 26, 2323 (2010).

    CAS  Google Scholar 

  16. J. Mähler and I. Persson, Inorg. Chem. 51, 425 (2012).

    Article  Google Scholar 

  17. A. Bankura, V. Carnevale, and M. L. Klein, Mol. Phys. 112, 1448 (2014).

    Article  CAS  Google Scholar 

  18. S. S. Azam, H. Zaheerul, and M. Q. Fatmi, J. Mol. Liq. 153, 95 (2010).

    Article  CAS  Google Scholar 

  19. R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, J. Phys. Chem. B 111, 13570 (2007).

    Article  CAS  Google Scholar 

  20. A. Bankura, V. Carnevale, and M. L. Klein, J. Chem. Phys. 138, 014501 (2013).

    Article  Google Scholar 

  21. A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 124, 024321 (2006).

    Article  Google Scholar 

  22. A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 126, 144311 (2007).

    Article  Google Scholar 

  23. J. S. Rao, T. C. Dinadayalane, J. Leszczynski, and G. N. Sastry, J. Phys. Chem. A 112, 12944 (2008).

    Article  CAS  Google Scholar 

  24. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.01 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  26. CPMD V3.11 CIC (MPI, 1997–2001).

  27. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  29. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  CAS  Google Scholar 

  30. F. Xia, H. Yi, and D. Zeng, J. Phys. Chem. A 114, 8406 (2010).

    Article  CAS  Google Scholar 

  31. Y. Zhou, Y. Fang, C. Fang, F. Zhu, H. Ge, and Q. Chen, J. Phys. Chem. B 117, 11709 (2013).

    Article  CAS  Google Scholar 

  32. K. G. Spears and S. H. Kim, J. Phys. Chem. 80, 673 (1976).

    Article  CAS  Google Scholar 

  33. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J. Comput. Chem. 17, 49 (1996).

    Article  CAS  Google Scholar 

  34. S. Reiser, S. Deublein, J. Vrabec, and H. Hasse, J. Chem. Phys. 140, 044504 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou Yongquan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yongquan, Z., Chunhui, F., Yan, F. et al. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration. Russ. J. Phys. Chem. 91, 2539–2547 (2017). https://doi.org/10.1134/S0036024417130313

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417130313

Keywords

Navigation