Skip to main content
Log in

Numerical simulation of the solvate structures of acetylsalicylic acid in supercritical carbon dioxide containing polar co-solvents

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Hydrogen-bonded complexes of acetylsalicylic acid with polar co-solvents in supercritical carbon dioxide, modified by methanol, ethanol, and acetone of 0.03 mole fraction concentration, are studied by numerical methods of classical molecular dynamics simulation and quantum chemical calculations. The structure, energy of formation, and lifetime of hydrogen-bonded complexes are determined, along with their temperature dependences (from 318 to 388 K at constant density of 0.7 g cm−3). It is shown that the hydrogen bonds between acetylsalicylic acid and methanol are most stable at 318 K and are characterized by the highest value of absolute energy. At higher supercritical temperatures, however, the longest lifetime is observed for acetylsalicylic acid–ethanol complexes. These results correlate with the known literature experimental data showing that the maximum solubility of acetylsalicylic acid at density values close to those considered in this work and at temperatures of 318 and 328 K is achieved when using methanol and ethanol as co-solvents, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bettini, A. Rossi, E. Lavezzini, et al., J. Therm. Anal. Calorim. 73, 487 (2003).

    Article  CAS  Google Scholar 

  2. C. Domingo, E. Berends, and G. M. van Rosmalen, J. Supercrit. Fluids 10, 39 (1997).

    Article  CAS  Google Scholar 

  3. Z. Huang, W.-D. Lu, S. Kawi, and Y. C. Chiew, J. Chem. Eng. Data 49, 1323 (2004).

    Article  CAS  Google Scholar 

  4. Z. Huang, Y.-C. Chiew, W.-D. Lu, and S. Kawi, Fluid Phase Equilib. 237, 9 (2005).

    Article  CAS  Google Scholar 

  5. Z. Huang, Y.-C. Chiew, M. Feng, et al., J. Supercrit. Fluids 43, 259 (2007).

    Article  CAS  Google Scholar 

  6. D. L. Tomasko, B. L. Knutson, F. Pouillot, et al., J. Phys. Chem. 97, 11823 (1993).

    Article  CAS  Google Scholar 

  7. J. Ke, Sh. Jin, B. Han, et al., J. Supercrit. Fluids 11, 53 (1997).

    Article  CAS  Google Scholar 

  8. M. Yamamoto, Y. Iwai, T. Nakajima, and Y. Arai, J. Phys. Chem. A 103, 3525 (1999).

    Article  CAS  Google Scholar 

  9. J. Wang, Z. Wu, and F. Zhao, J. Supercrit. Fluids 58, 272 (2011).

    Article  CAS  Google Scholar 

  10. V. E. Petrenko, M. L. Antipova, D. L. Gurina, and E. G. Odintsova, Russ. J. Phys. Chem. A 89, 1381 (2015).

    Article  Google Scholar 

  11. E. Apol, R. Apostolov, and H. J. C. Berendsen, GROMACS-4.5.4 (Sweden, 2001–2010). http://wwwgromacs. org

    Google Scholar 

  12. A. Zhu, X. Zhang, Q. Liu, and Q. Zhang, Chin. J. Chem. Eng. 17, 268 (2009).

    Article  CAS  Google Scholar 

  13. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  14. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  15. S. Nose, Mol. Phys. 52, 255 (1984).

    Article  CAS  Google Scholar 

  16. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  Google Scholar 

  17. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  18. U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  19. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  20. D. C. Rapaport, Mol. Phys. 50, 1151 (1983).

    Article  CAS  Google Scholar 

  21. J. Hutter, A. Alavi, T. Deutch, et al., CPMD MPI (IBM Corp., 1990–2008; MPI Festkörperforsch., Stuttgart, 1997–2001).

    Google Scholar 

  22. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  24. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Petrenko.

Additional information

Original Russian Text © V.E. Petrenko, M.L. Antipova, D.L. Gurina, E.G. Odintsova, R.S. Kumeev, V.A. Golubev, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 7, pp. 1025–1031.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrenko, V.E., Antipova, M.L., Gurina, D.L. et al. Numerical simulation of the solvate structures of acetylsalicylic acid in supercritical carbon dioxide containing polar co-solvents. Russ. J. Phys. Chem. 90, 1379–1384 (2016). https://doi.org/10.1134/S0036024416070244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416070244

Keywords

Navigation