Skip to main content
Log in

Hydrogen-Bonded Complexes of p-Hydrobenzoic Acid and Its Derivatives with a Polar Cosolvent in Supercritical Carbon Dioxide

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The results of numerical modeling of p-hydroxybenzoic acid, methylparaben, and propylparaben solutions in methanol-modified supercritical carbon dioxide were presented. The composition, structure, and formation energy of the solute–cosolvent hydrogen-bonded complexes were determined. The duration of the existence of hydrogen bonds via individual paraben atoms was evaluated based on the data of Car–Parrinello ab initio molecular dynamics simulation, and the potential of mean force of interaction with methanol was calculated taking into account the medium. It was shown that, despite the presence of several potential centers of specific interaction, p-hydroxybenzoic acid and its derivatives form hydrogen bonds mainly via carboxyl and hydroxyl protons, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. R. Lee, C. Y. Lin, Z. G. Li, and T. F. Tsai, J. Chromatogr. A 1120, 244 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. M. Asghari-Khiavi and Y. Yamini, J. Chem. Eng. Data 48, 61 (2003).

    Article  CAS  Google Scholar 

  3. I. M. Gil’mutdinov, I. I. Gil’mutdinov, I. V. Kuznetsova, and A. N. Sabirzyanov, Theor. Found. Chem. Eng. 50, 15 (2016).

    Article  CAS  Google Scholar 

  4. K. W. Cheng, M. Tang, and Y. P. Chen, Fluid Phase Equilib. 201, 79 (2002).

    Article  CAS  Google Scholar 

  5. J. S. Jin, Z. T. Zhang, Q. S. Li, et al., J. Chem. Eng. Data 50, 801 (2005).

    Article  CAS  Google Scholar 

  6. F. P. Lucien and N. R. Foster, Ind. Eng. Chem. Res. 35, 4686 (1996).

    Article  CAS  Google Scholar 

  7. M. R. Junior, A. V. Leite, and N. R. Dragano, Open Chem. Eng. J. 4, 51 (2010).

    Article  CAS  Google Scholar 

  8. F. Ingrosso and M. F. Ruiz-López, ChemPhysChem 18, 2560 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. J. Jin, C. Zhong, Z. Zhang, and Y. Li, Fluid Phase Equilib. 226, 9 (2004).

    Article  CAS  Google Scholar 

  10. K. E. Anderson and J. I. Siepmann, J. Phys. Chem. B 112, 11374 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. P. M. Agrawal, B. M. Rice, D. C. Sorescu, and D. L. Thompson, Fluid Phase Equilib. 166, 1 (1999).

    Article  CAS  Google Scholar 

  12. A. I. Frolov and M. G. Kiselev, J. Phys. Chem. B 118, 11769 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. D. L. Gurina, M. L. Antipova, E. G. Odintsova, and V. E. Petrenko, J. Supercrit. Fluids 120, 59 (2017).

    Article  CAS  Google Scholar 

  14. D. L. Gurina, M. L. Antipova, E. G. Odintsova, and V. E. Petrenko, J. Supercrit. Fluids 126, 47 (2017).

    Article  CAS  Google Scholar 

  15. M. J. Abraham, D. van der Spoel, E. Lindahl, and B. Hess (GROMACS Development Team), GROMACS User Manual, Version 5.0.7 (2015). www.gromacs.org.

  16. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  17. A. Zhu, X. Zhang, L. I. U. Qinglin, and Q. Zhang, Chin. J. Chem. Eng. 17, 268 (2009).

    Article  CAS  Google Scholar 

  18. M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  19. S. Nose, Mol. Phys. 52, 255 (1984).

    Article  CAS  Google Scholar 

  20. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

  21. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  22. U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  23. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  24. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).

    Article  CAS  Google Scholar 

  25. J. Hutter, A. Alavi, T. Deutch, et al., CPMD Program (MPI Festkörperforschung, Stuttgart, 1997–2001; IBM Corp., 1990–2008).

  26. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  27. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  28. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  29. D. L. Gurina, M. L. Antipova, and V. E. Petrenko, Russ. J. Phys. Chem. A 87, 1662 (2013).

    Article  CAS  Google Scholar 

  30. J. Wang, Z. Wu, and F. Zhao, J. Supercrit. Fluids 58, 272 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by the Russian Foundation for Basic Research (project no. 16-33-60060).

We are grateful to the Joint Supercomputer Center, Russian Academy of Sciences (Moscow), for providing us with the resources on the MVS-100K cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Gurina.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurina, D.L., Antipova, M.L., Odintsova, E.G. et al. Hydrogen-Bonded Complexes of p-Hydrobenzoic Acid and Its Derivatives with a Polar Cosolvent in Supercritical Carbon Dioxide. Russ. J. Phys. Chem. 93, 865–872 (2019). https://doi.org/10.1134/S0036024419050121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419050121

Keywords:

Navigation