Skip to main content
Log in

Properties of solvate shells and the mobility of ions, according to molecular dynamics data

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The solvate shells of an ion, its velocity autocorrelation function, and diffusion coefficient D are found, and the interrelations between them are analyzed. A single ion in the system of atoms of a liquid is considered a model system. The interaction between the ion and atoms of the liquid is described by polarization potential U(r); the interaction between atoms of the liquid alone is described by the Lennard–Jones potential. A classical molecular dynamics method is used. Five solvate shells around the ion are found, and the lifetimes of atoms on each shell are calculated. It is found that the velocity autocorrelation function is of a vibrating nature. The spectrum of the autocorrelator and the frequency of cluster vibrations in a linear approximation are compared. Dependences D on parameters of potential U(r) are found. No dependence D on the ion mass is found; this is explained by solvation. The Einstein–Stokes formula and the HSK approximation are used in discussing the results. It is shown that at small radii of the ion, dependence D on parameters U(r) is described by such a model. When the ion radius is increased, the deviation from this dependence and an increase in D are observed. The results are compared to experimental mobilities of O -2 and Ar +2 ions in liquid argon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Roussel-Dupré, J. J. Colman, E. Symbalisty, et al., Space Sci. Rev. 137, 51 (2008).

    Article  Google Scholar 

  2. Z. L. Petrovic, Z. M. Raspopovic, V. D. Stojanovic, et al., Appl. Surf. Sci. 253, 6619 (2007).

    Article  CAS  Google Scholar 

  3. L. G. Christophorou, J. K. Olthoff, and R. J. van Brunt, IEEE Electr. Insul. Mag. 13 (5), 20 (1997).

    Article  Google Scholar 

  4. F. Fernandez-Lima, D. Kaplan, J. Suetering, et al., Int. J. Ion. Mobil. Spectrom. 14, 93 (2011).

    Article  Google Scholar 

  5. A. Kanu, P. Dwivedi, M. Tam, et al., J. Mass. Spectrom. 43, 1 (2008).

    Article  CAS  Google Scholar 

  6. B. M. Smirnov, Ions and Excited Atoms in Plasma (Atomizdat, Moscow, 1974) [in Russian].

    Google Scholar 

  7. R. Kh. Amirov, A. V. Lankin, and G. E. Norman, J. Exp. Theor. Phys. 119, 341 (2014).

    Article  Google Scholar 

  8. A. M. Juarez, J. Urquijo, G. Hinojosa, et al., Plasma Sources Sci. Technol. 19, 034005 (2010).

    Article  Google Scholar 

  9. L. G. Christophorou and R. J. Brunt, IEEE Trans. Dielectr. Insul. 2, 952 (1995).

    Article  CAS  Google Scholar 

  10. K. Wamba, C. Hall, M. Breidenbach, et al., Nucl. Instrum. Methods Phys. Res. A 555, 205 (2005).

    Article  CAS  Google Scholar 

  11. M. Benhenni, M. Yousfi, J. Urquijo, and A. Hennad, J. Phys. D: Appl. Phys. 42, 125203 (2009).

    Article  Google Scholar 

  12. N. Gee, M. Floriano, T. Wada, et al., J. Appl. Phys. 57, 1097 (1985).

    Article  CAS  Google Scholar 

  13. J. Rutherfoord and R. B. Walker, J. Phys.: Conf. Ser. 404, 012016 (2012).

    Google Scholar 

  14. J. Rutherfoord and R. B. Walker, Nucl. Instrum. Methods Phys. Res. A 776, 65 (2015).

    Article  CAS  Google Scholar 

  15. B. L. Henson, Phys. Rev. A 135, 1002 (1964).

    Article  CAS  Google Scholar 

  16. O. Hilt, F. Schmidt, and A. Khrapak, IEEE Trans. Dielectr. Electr. Insul. 1, 648 (1994).

    Article  CAS  Google Scholar 

  17. A. Berezhnov, A. Khrapak, E. Illenberger, and W. Schmidt, in Proceedings of the 14th IEEE International Conference on Dielectric Liquids ICDL 2002 (2002), p. 71.

    Google Scholar 

  18. A. Khrapak and W. Schmidt, Int. J. Mass. Spectrom. 277, 236 (2008).

    Article  CAS  Google Scholar 

  19. G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2013).

    Article  Google Scholar 

  20. G. E. Norman and V. V. Stegailov, Math. Models Comput. Simul. 5, 305 (2013).

    Article  Google Scholar 

  21. D. K. Belashchenko, M. N. Rodnikova, M. N. Balabaev, and I. A. Solonina, Russ. J. Phys. Chem. A 88, 94 (2014).

    Article  CAS  Google Scholar 

  22. O. V. Artoshina, M. Yu. Vorob’eva, E. B. Dushanov, and Kh. T. Kholmurodov, Russ. J. Phys. Chem. A 88, 951 (2014).

    Article  CAS  Google Scholar 

  23. A. E. Galashev and V. A. Polukhin, Russ. J. Phys. Chem. A 88, 995 (2014).

    Article  CAS  Google Scholar 

  24. M. L. Antipova and V. E. Petrenko, Russ. J. Phys. Chem. A 87, 1170 (2013).

    Article  CAS  Google Scholar 

  25. V. Yu. Buz’ko, A. A. Polushin, G. Yu. Chuiko, and Kh. B. Kushkov, Russ. J. Phys. Chem. A 87, 521 (2013).

    Article  Google Scholar 

  26. M. I. Averina, A. V. Egorov, and V. I. Chizhik, Russ. J. Phys. Chem. A 88, 1340 (2014).

    Article  CAS  Google Scholar 

  27. E. Mason, H. O’Hara, and F. J. Smith, J. Chem. Phys. 44, 3513 (1973).

    Google Scholar 

  28. D. Nelson, M. Benhenni, O. Eichwald, and M. Yousfi, J. Phys. D: Appl. Phys. 34, 3247 (2001).

    Article  CAS  Google Scholar 

  29. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Fizmatlit, Moscow, 2001; Pergamon, New York, 1987).

    Google Scholar 

  31. Short Handbook of Physical Chemical Values, Ed. by A. A. Ravdel and A. M. Ponomareva (Ivan Fedorov, St. Petersburg, 2003) [in Russian].

  32. U. Sowada and R. Holroyd, J. Chem. Phys. 70, 3586 (1979).

    Article  CAS  Google Scholar 

  33. H. T. Davis, S. A. Rice, and L. Meyer, J. Chem. Phys. 37, 2470 (1962).

    Article  CAS  Google Scholar 

  34. H. Bohmer and S. Peyerimhoff, Z. Phys. D: At. Mol. Clust. 11, 239 (1989).

    Article  Google Scholar 

  35. J. Soler, J. Saenz, N. Garcia, and O. Echt, Chem. Phys. Lett. 109, 71 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lankin.

Additional information

Original Russian Text © A.V. Lankin, G.E. Norman, M.A. Orekhov, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 5, pp. 710–716.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lankin, A.V., Norman, G.E. & Orekhov, M.A. Properties of solvate shells and the mobility of ions, according to molecular dynamics data. Russ. J. Phys. Chem. 90, 962–968 (2016). https://doi.org/10.1134/S0036024416050198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416050198

Keywords

Navigation