Skip to main content
Log in

Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Kinetics of ruthenium(III) catalyzed oxidation of biologically important sugar alcohols (myo-inositol, D-sorbitol, and D-mannitol) by dichloroisocyanuric acid was carried out in aqueous acetic acid—perchloric medium. The reactions were found to be first order in case of oxidant and ruthenium(III). Zero order was observed with the concentrations of sorbitol and mannitol whereas, a positive fractional order was found in the case of inositol concentration. An inverse fractional order was observed with perchloric acid in oxidation of three substrates. Arrhenius parameters were calculated and a plausible mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Bieleski, in Encyclopaedia of Plant Physiology, New Series, Ed. by F. A. Loewus and W. Tanner, Vol. 13A (Springer, Berlin, 1982), p. 158.

  2. U. Anthoni, C. Christophersen, L. Hougaard, and P. H. Nielsen, Comp. Biochem. Physiol. B 99, 1 (1991).

    Article  Google Scholar 

  3. W. Pigman and D. Horton, Carbohydrates Chemistry and Biochemistry, 2nd ed. (Academic Press, New York, 1972).

    Google Scholar 

  4. U. Karner, T. Peterbauer, V. Raboy, D. A. Jones, C. L. Hedley, and A. Richter, J. Exp. Bot. 55, 1981 (2004).

    Article  CAS  Google Scholar 

  5. A. R. Alcazar-Roman and S. R. Wente, Chromosoma 117, 1 (2007).

    Article  CAS  Google Scholar 

  6. R. H. Michell, Biochem. Soc. Symp. 74, 223 (2007).

    Article  CAS  Google Scholar 

  7. M. Fujita and Y. Jigami, Biochim. Biophys. Acta 1780, 410 (2007).

    Article  CAS  Google Scholar 

  8. X. Tan, L. I. Calderon-Villalobos, M. Sharon, C. Zheng, C. V. Robinson, M. Estelle, and N. Zheng, Nature 446, 640 (2007).

    Article  CAS  Google Scholar 

  9. S. Sheila and S. Parul, Der Chem. Sin. 1 (1), 13 (2010).

    Google Scholar 

  10. H. Schiweck, A. Bär, and R. Vogel, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley Online Library (2000).

    Google Scholar 

  11. J. M. H. Stoop and H. Mooibroek, Appl. Environ. Microbiol. 64, 4689 (1998).

    CAS  Google Scholar 

  12. S. P. S. Mehta and K. S. Dhami, Himalayan Chem. Pharm. Bull. 7, 14 (1990).

    CAS  Google Scholar 

  13. V. L. Devi, G. S. S. Murthy, and K. Sushma, Chem. Commun. 12, 72 (1986).

    CAS  Google Scholar 

  14. S. Bidyut, M. Kiran Chowdhury, and M. Jayashree, J. Sol. Chem. 37, 1321 (2008).

    Article  CAS  Google Scholar 

  15. M. W. Wieczorek, W. O. Karolak, J. Jciechowska, M. Miko, and M. Witczak, Int. J. Chem. Kinet. 42, 440 (2010).

    Article  CAS  Google Scholar 

  16. A. Roy and A. K. Das, Ind. J. Chem. A 41, 2468 (2002).

    Google Scholar 

  17. S. Sheila, S. Sangeeta, S. Shalini, S. Parul, and A. Jaiswal, Bull. Catal. Soc. Ind. 6, 140 (2007).

    Google Scholar 

  18. E. O. Odebunmi, O. A. Oyetunji, and H. Marufu, Nigerian J. Sci. 33, 145 (1999).

    Google Scholar 

  19. T. Croguennec, F. Nau, and G. Bruleacute, Int. J. Chem. Kinet. 40, 445 (2008).

    Article  CAS  Google Scholar 

  20. Y. Lakshman Kumar, R. Venkata Nadh, and P. S. Radhakrishnamurti, Asian J. Chem. 24, 5869 (2012).

    Google Scholar 

  21. Y. Lakshman Kumar, R. Venkata Nadh, and P. S. Radhakrishnamurti, Russ. J. Phys. Chem. A 88, 780 (2014).

    Article  CAS  Google Scholar 

  22. S. M. Desai, N. N. Halligudi, S. T. Nandibewoor, Trans. Met. Chem. 27, 207 (2002).

    Article  CAS  Google Scholar 

  23. V. H. Rajeshwari, P. S. Anita, T. N. Sharanappa, and A. C. Shivamurti, Int. J. Chem. Kinet. 42, 440 (2010). doi: doi 10.1002/kin.20485

    Article  CAS  Google Scholar 

  24. J. P. Sharma, R. N. P. Singh, A. K. Singh, and S. Bharat, Tetrahedron. 42, 2739 (1986).

    Article  CAS  Google Scholar 

  25. S. Sheila, Trans. Met. Chem. 24, 683 (1999).

    Article  Google Scholar 

  26. N. A. Mohamed Farook, R. Prabaharan, S. Rahini, R. Senthil Kumar, G. Rajamahendran, and B. Gopala Krishnan, E-J. Chem. 1, 127 (2004).

    Article  Google Scholar 

  27. R. Venkata Nadh, B. Syama Sundar, and P. S. Radhakrishnamurti, Oxid. Commun. 28, 81 (2005).

    Google Scholar 

  28. S. Sireesha and R. Venkata Nadh, Bulgar. Chem. Commun. 47(1), 13 (2015).

    Google Scholar 

  29. E. S. Amis, Solvent Effects on Reaction Rates and Mechanisms (Academic, New York, 1966), p. 142.

    Google Scholar 

  30. Y. Lakshman Kumar, R. Venkata Nadh, and P. S. Radhakrishnamurti, Bull. Chem. Soc. Ethiop. 29, 1 (2015).

    Article  CAS  Google Scholar 

  31. Y. Lakshman Kumar, R. Venkata Nadh, and P. S. Radhakrishnamurti, Russ. J. Phys. Chem. A 88, 376 (2015).

    Article  CAS  Google Scholar 

  32. S. Mabel, C. Evangelina, M. S. P. Juan, K. Laszlo, R. Antal, F. S. Luis, and S. Sandra, Polyhedron 26, 169 (2007).

    Article  CAS  Google Scholar 

  33. A. Anju, S. Gayatri, C. L. Khandelwal, and P. D. Sharma, Inorg. React. Mech. 4, 233 (2002). doi: doi 10.1080/1028662021000062617

    Article  CAS  Google Scholar 

  34. A. Rashmi and G. F. Anand, Pharma Chem. 5, 300 (2013).

    Google Scholar 

  35. F. Figel, Spot Tests in Organic Analysis, 5th ed. (Elsevier, Amsterdam, 1956), pp. 391, 358.

    Google Scholar 

  36. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel’s Textbook of Quantitative Chemical Analysis, 5th ed. (Longmans Singapore, Singapore, 1996), pp. 467, 391.

    Google Scholar 

  37. Sh. Srivastava and A. L. Singh, Oxid. Commun. 36, 41 (2013).

    CAS  Google Scholar 

  38. Delio Baraldi, J. Chromatogr. A 42, 125 (1969).

    Article  CAS  Google Scholar 

  39. H. K. Okoro and E. O. Odebunmi, Int. J. Phys. Sci. 4, 471 (2009).

    CAS  Google Scholar 

  40. H. K. Okoro and E. O. Odebunmi, Sci. Res. Essays 5, 2588 (2010).

    Google Scholar 

  41. S. Meenakshisundaram and V. Sathiyendiran, J. Chem. Res. 10, 458 (2000).

    Article  Google Scholar 

  42. N. Kambo and S. K. Upadhyaya, Trans. Met. Chem. 25, 461 (2000).

    Article  CAS  Google Scholar 

  43. F. Albert Cotton, G. Wilkinson, A. M. Carlos, and M. Bochmann, Advanced Inorganic Chemistry, 6th ed. (Wiley, New York, 1999).

    Google Scholar 

  44. H. H Cady and R. E. Connick, J. Am. Chem. Soc. 80, 2646 (1958).

    Article  CAS  Google Scholar 

  45. M. M. T. Khan and R. S. Shukla, J. Mol. Catal. 34, 269 (1986).

    Article  Google Scholar 

  46. R. E. Connick and D. A. Fine, J. Am. Chem. Soc. 82, 4187 (1960).

    Article  CAS  Google Scholar 

  47. A. R. Supale and G. S. Gokavi, React. Kinet. Catal. Lett. 96, 83 (2009).

    Article  CAS  Google Scholar 

  48. A. P. Savanur, S. T. Nandibewoor, and S. A. Chimatadar, Trans. Met. Chem. 34, 711 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkata Nadh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshman Kumar, Y., Venkata Nadh, R. & Radhakrishnamurti, P.S. Ruthenium(III) catalyzed oxidation of sugar alcohols by dichloroisocyanuric acid—A kinetic study. Russ. J. Phys. Chem. 90, 300–307 (2016). https://doi.org/10.1134/S0036024416020163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416020163

Keywords

Navigation