Skip to main content
Log in

Template assisted synthesis of CaO-SnO2 nanocomposites

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Calcium oxide (CaO) and tin oxide (SnO2) with nanodimension have attracted significant attention as effective chemosorbents for toxic compounds. Hydrothermal method was used for the synthesis of highly porous CaO-SnO2 nanocomposites by using sodium dodecylsulfate surfactant as a templating agent. Effect of concentration of surfactant as well as its critical micelle concentration (CMC) on the particle size of the nanocomposites was investigated. X-ray diffraction (XRD) was used to determine the crystal phases of these nanocomposites and particle size and morphology was identified by using transmission electron microscopy (TEM), scanning electron microscopy-energy dispersive X-ray (SEM/EDX) respectively. Furthermore thermo gravimetric analysis (TGA) and fourier transform infrared (FTIR) spectroscopy techniques were also used to characterize the CaO-SnO2 nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Patel, U. Pal, and S. Menon, Sep. Sci. Technol. 44, 2806 (2009).

    Article  CAS  Google Scholar 

  2. M. A. Farrukh, B. T. Heng, and R. Adnan, Turk. J. Chem. 34, 537 (2010).

    CAS  Google Scholar 

  3. D. Gouvea, G. J. Pereirab, L. Gengembrec, M. C. Steil, R. Pascal, A. Rubbensc, P. Hidalgoa, and R. H. R. Castroe, Appl. Surf. Sci. 257, 4219 (2011).

    Article  CAS  Google Scholar 

  4. M. Shahid, M. A. Farrukh, A. A. Umar, and M. Khaleeq-ur-Rahman, Russ. J. Phys. Chem. A 88, 836 (2014).

    Article  CAS  Google Scholar 

  5. M. Zabeti, W. M. A. Wan Daud and M. A. Kheireddine, Appl. Catal. A: Gen. 366, 154 (2009).

    Article  CAS  Google Scholar 

  6. A. Demirbas, Energy Convers. Manage. 48, 937 (2007).

    Article  CAS  Google Scholar 

  7. M. L. Granados, M. D. Z. Poves, D. M. Alonso, R. Mariscal, F. C. Galisteo, T. R. Moreno, J. Santamaria, and J. L. G. Fierro, Appl. Catal. B: Environ. 73, 317 (2007).

    Article  CAS  Google Scholar 

  8. Z. X. Tang, Yu Zhen, Xin-Yi Zhang, Qin-Qin Pan, and Lu-E Shi, Quim. Nova. J. 2, 19 (2013).

    CAS  Google Scholar 

  9. N. A. Oladoja, I. Ololade, S. E. Olaseni, V. O. Olatujoye, O. S. Jegede, and A. O. Agunloye, Ind. Eng. Chem. 51, 639 (2012).

    Article  Google Scholar 

  10. S. L. Martinez, R. Romero, J. C. Lopez, A. Romero, V. S. Mendieta, and R. Natividad, Ind. Eng. Chem. 50, 2665 (2011).

    Article  Google Scholar 

  11. G. B. Cai, G. X. Zhao, X. K. Wang, and S. H. Yu, J. Phys. Chem. C 114, 12948 (2010).

    Article  CAS  Google Scholar 

  12. M. M. Najafpour, S. Nayeri, and B. Pashaei, Dalton. Trans. 40, 9374 (2011).

    Article  CAS  Google Scholar 

  13. Z. Wan and B. H. Hameed, Bioresour. Technol. 102, 2659 (2011).

    Article  CAS  Google Scholar 

  14. S. Ferrere, A. Zaban and B. A. Gregg, J. Phys. Chem. B 101, 4490 (1997).

    Article  CAS  Google Scholar 

  15. T. Hayakawa and M. Nogami, Sci. Technol. Adv. Mater. 6, 66 (2005).

    Article  CAS  Google Scholar 

  16. M. A. Farrukh, P. Tan, and R. Adnan, Turk. J. Chem. 36, 303 (2012).

    CAS  Google Scholar 

  17. M. B. Sahana, C. Sudakar, A. Dixit, J. S. Thakur, R. Naik, and V. M. Naik, Acta Mater. 60, 1072 (2012).

    Article  CAS  Google Scholar 

  18. R. Adnan, N. A. Razana, I. A. Rahman and M. A. Farrukh, J. Chin. Chem. Soc. 57, 222 (2010).

    Article  CAS  Google Scholar 

  19. R. Gavagnin, L. Biasetto, F. Pinna, and G. Strukul, Appl. Catal. B: Environ. 38, 91 (2000).

    Article  Google Scholar 

  20. H. Perveen, M. A. Farrukh, M. Khaleeq-ur-Rahman, B. Munir, and M. A. Tahir, Russ. J. Phys. Chem. A 89, 99 (2015).

    Article  CAS  Google Scholar 

  21. T. E. Moustafid, H. Cachet, B. Tribollet, and D. Festy, Electrochim. Acta 47, 1209 (2007).

    Article  Google Scholar 

  22. M. Okuya, S. Kaneko, K. Hiroshima, I. Yaggi, and K. Murakami, J. Eur. Ceram. Soc. 21, 2099 (2001).

    Article  CAS  Google Scholar 

  23. F. L. Chen and M. L. Liu, Chem. Commun., 1829 (1999).

    Google Scholar 

  24. C. Kim, M. Noh, M. Choi, J. Cho, and B. Park, Chem. Mater. 17, 3297 (2005).

    Article  CAS  Google Scholar 

  25. P. T. Wierzchowski and W. L. Zatorski, Appl. Catal. B: Environ. 44, 53 (2003).

    Article  CAS  Google Scholar 

  26. L. Chou, Y. Cai, B. Zhang, J. Niu, S. Ji, and S. Li, Appl. Catal. A: Gen. 238, 185 (2003).

    Article  CAS  Google Scholar 

  27. H. C. Wang, Y. Li, and M. J. Yang, Sens. Actuators B: Chem. 119, 380 (2006).

    Article  CAS  Google Scholar 

  28. Z. J. Li, Z. Qin, Z. H. Zhou, L. Y. Zhang, and Y. F. Zhang, Nanoscale Res. Lett. 4, 1434 (2009).

    Article  CAS  Google Scholar 

  29. M. R. Vaezi and S. K. Sadrnezhaad, Mater. Sci. Eng. B: Solid 140, 73 (2007).

    Article  CAS  Google Scholar 

  30. S. Somita and R. Roy, Bull. Mater. Sci. 23, 453 (2000).

    Article  Google Scholar 

  31. H. Zhu, Y. Wang, N. Wang, Y. Li, and J. Yang, J. Mater. Lett. 58, 2631 (2004).

    Article  CAS  Google Scholar 

  32. Z. Mirghiasi, F. Bakhtiari, E. Darezereshki, and E. Esmaeilzadeh, J. Ind. Eng. Chem. 20, 113 (2014).

    Article  CAS  Google Scholar 

  33. A. Roy and J. Bhattacharya, Int. J. Nanosci. 10, 413 (2011).

    Article  CAS  Google Scholar 

  34. A. Imtiaz, M. A. Farrukh, M. K. Rahman, and R. Adnan, Sci. World J. 2013, Article ID 641420 (2013).

  35. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science 276, 1395 (1997).

    Article  CAS  Google Scholar 

  36. Q. Dong, H. Su, D. Zhang, N. Zhu, and X. Q. Guo, Acta Mater. 13, 3146 (2008).

    Google Scholar 

  37. Z. Pan, Z. Dai, and Z. L. Wang, Science 291, 1947 (2001).

    Article  CAS  Google Scholar 

  38. Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, Adv. Mater. 15, 1754 (2001).

    Article  Google Scholar 

  39. D. F. Zhang, L. D. Sun, J. L. Yin, and C. H. Yan, Adv. Mater. 15, 1022 (2003).

    Article  CAS  Google Scholar 

  40. Z. R. Dai, Z. W. Pan, and Z. L. Wang, Solid State Commun. 118, 351 (2001).

    Article  CAS  Google Scholar 

  41. A. Mansoori, T. R. Bastami, A. Ahmadpur, and Z. Eshaghi, Ann. Rev. Nano. Res. 2, 439 (2008).

    Article  CAS  Google Scholar 

  42. V. Stengl, J. Subrt, P. Bezdicka, M. Marikova, and S. Bakadjieva, Solid State Phenom. 90, 121 (2003).

    Article  Google Scholar 

  43. D. Vujicić, A. Comić, R. Zarubica, R. Micić, and G. Bosković, Fuel 89, 2054 (2010).

    Article  Google Scholar 

  44. I. Muneer, M. A. Farrukh, S. Javaid, M. Shahid, and M. Khaleeq-ur-Rahman, Superlat. Microstruct. 77, 256 (2015).

    Article  CAS  Google Scholar 

  45. E. A. Dean, Acta. Crystallogr. B 66, 271 (2010).

    Article  Google Scholar 

  46. Y. C. Sharma, B. Singh, and J. Korstad, Energ. Fuel 24, 3223 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munir, B., Farrukh, M.A., Perveen, H. et al. Template assisted synthesis of CaO-SnO2 nanocomposites. Russ. J. Phys. Chem. 89, 1051–1058 (2015). https://doi.org/10.1134/S0036024415060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415060059

Keywords

Navigation