Skip to main content
Log in

Synthesis, structural properties and catalytic activity of MgO-SnO2 nanocatalysts

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Surfactant controlled synthesis of magnesium oxide-tin oxide (MgO-SnO2) nanocatalysts was carried out via the hydrothermal method. Concentration of sodium dodecyl sulfate (SDS) was varied while all other reaction conditions were kept constant same for this purpose. Furthermore, MgO-SnO2 nanocatalysts were also prepared by changing the precursor’s concentration. These precursors are magnesium nitrate Mg(NO3)2 · 6H2O and tin chloride (SnCl4 · 5H2O). The influence of these reaction parameters on the sizes and morphology of the nanocatalysts were studied by using Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX), Powder X-ray diffraction (XRD), Transmission electron microscopy and Thermo gravimetric analysis (TGA). The catalytic efficiency of MgO-SnO2 was checked against 2,4-dinitrophenylhydrazine (DNPH), which is an explosive compound. The nanocatalysts were found as a good catalyst to degrade the DNPH. Catalytic activity of nanocatalysts was observed up to 19.13% for the degradation DNPH by using UV-spectrophotometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Farrukh, B. T. Heng, and R. Adnan, Turk. J. Chem. 34, 537 (2010).

    CAS  Google Scholar 

  2. L. Li, Z. Zhu, X. Yao, G. Lu, and Z. Yan, Micro. Mes. Mater. 112, 621 (2008).

    Article  CAS  Google Scholar 

  3. M. A. Farrukh, P. Tan, and R. Adnan, Turk. J. Chem. 36, 303 (2012).

    CAS  Google Scholar 

  4. R. Adnan, N. A. Razana, I. A. Rahman, and M. A. Farrukh, J. Chin. Chem. Soc. 57, 222 (2010).

    Article  CAS  Google Scholar 

  5. A. Umar, M. M. Rahman, and Y. B. Hahn, Electrochem. Commun. 11, 1353 (2009).

    Article  CAS  Google Scholar 

  6. J. W. Zhao, L. R. Qin, Y. H. Hao, Q. Guo, F. Mu, and Z. K. Yan, Microchim. Acta 178, 439 (2012).

    Article  CAS  Google Scholar 

  7. J. Bai, F. Meng, C. Wei, Y. Zhao, H. Tan, and J. Liu, Ceram. Silik. 55, 20 (2011).

    CAS  Google Scholar 

  8. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, and A. Gedanken, Adv. Funct. Mater. 15,1708 (2005).

    Article  CAS  Google Scholar 

  9. M. Shahid, M. A. Farrukh, A. A. Umar, and M. Khaleeq-ur-Rahman, Russ. J. Phys. Chem. A 88, 842 (2014).

    Article  Google Scholar 

  10. S. Ali, M. A. Farrukh, and M. Khaleeq-ur-Rahman, Korean J. Chem. Eng. 30, 2100 (2013).

    Article  CAS  Google Scholar 

  11. M. A. Shah and F. A. Al-Marzouki, I. J. B. N. N. 1, 10 (2010).

    CAS  Google Scholar 

  12. N. Sutradhar, A. Sinhamahapatra, B. Roy, H. C. Bajaj, I. Mukhopadhyay, and A. B. Panda, Mater. Res. Bull. 46, 2163 (2011).

    Article  CAS  Google Scholar 

  13. M. Li, X. Wang, H. Li, H. Di, X. Wu, C. Fang, and B. Yang, Appl. Surf. Sci. 274, 188 (2013).

    Article  CAS  Google Scholar 

  14. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Science 276, 1395 (1997).

    Article  CAS  Google Scholar 

  15. Q. Dong, H. Su, D. Zhang, N. Zhu, and X. Q. Guo, Acta Mater. 13, 3146 (2008).

    Google Scholar 

  16. Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, and C. W. Zhou, Adv. Mater. 15, 1754 (2001).

    Article  Google Scholar 

  17. A. C. Ibarguen, A. Mosquera, R. Parra, et al., Mater. Chem. Phys. 101, 433 (2007).

    Article  CAS  Google Scholar 

  18. J. Y. Park, Y. J. Lee, K. W. Jun, J. O. Baeg, and D. J. Yim, J. Ind. Eng. Chem. 12, 882 (2006).

    CAS  Google Scholar 

  19. J. D. Nowak and C. B. Carter, J. Mater. Chem. 44, 240 (2009).

    Google Scholar 

  20. A. Kumar, S. Thota, S. Varma, and J. Kumar, J. Luminesc. 131, 640 (2011).

    Article  CAS  Google Scholar 

  21. N. Rakmak, W. Wiyaratn, C. Bunyakan, and J. Chungsiriporn, Chem. Eng. J. 162, 84 (2010).

    Article  CAS  Google Scholar 

  22. N. C. S. Selvam, R. T. Kumar, L. J. Kennedy, and J. J. Vijaya, J. Alloys. Compd. 509, 9809 (2011).

    Article  CAS  Google Scholar 

  23. Y. Yan, L. Zhou, J. Zhang, H. Zeng, Y. Zhang, and L. Zhang, J. Phys. Chem. C 112, 10412 (2008).

    Article  CAS  Google Scholar 

  24. C. Yongjun, L. Jianbao, H. Yongsheng, Y. Xiaozhan, and D. Jinhui, J. Cryst. Growth 245, 163 (2002).

    Article  Google Scholar 

  25. M. A. Shah and A. Qurashi, J. Alloys. Compd. 482, 548 (2009).

    Article  CAS  Google Scholar 

  26. T. Selvamani, A. Sinhamahapatra, D. Bhattacharjya, and I. Mukhopadhyay, Mater. Chem. Phys. 129, 853 (2011).

    Article  CAS  Google Scholar 

  27. L. Sun, H. He, C. Liu, and Z. Ye, Appl. Surf. Sci. 257, 3607 (2011).

    Article  CAS  Google Scholar 

  28. Y. F. Hao, G. W. Meng, C. H. Ye, X. R. Zhang, and L. D. Zhang, J. Phys. Chem. B 109, 11204 (2005).

    Article  CAS  Google Scholar 

  29. Q. Shi, Y. Liu, Z. Gao, and Q, Zhao, J. Mater. Sci. Lett. 43, 1438 (2008).

    Article  CAS  Google Scholar 

  30. J. Zhang, L. Zhang, X. Peng, and X. Wang, Appl. Phys. A 73, 773 (2001).

    Article  CAS  Google Scholar 

  31. R. Z. Ma and Y. Bando, Chem. Phys. Lett. 370, 770 (2003).

    Article  CAS  Google Scholar 

  32. C. Shao, H. Guan, Y. Liu, and R. Mu, J. Mater. Sci. 41, 3821 (2006).

    Article  CAS  Google Scholar 

  33. M. A. Khan and S. S. Shah, J. Chem. Soc. Pak. 30, 186 (2008).

    CAS  Google Scholar 

  34. M. A. Farrukh, R. Kauser, and R. Adnan, Russ. J. Phys. Chem. A 87, 1462 (2013).

    Article  CAS  Google Scholar 

  35. H.-S. Goh, R. Adnan, and M. A. Farrukh, Turk. J. Chem. 35, 375 (2011).

    CAS  Google Scholar 

  36. B. M. Reddy, D. S. Han, N. Jiang, and S. E. Park, Catal. Surv. Asia 12, 56 (2008).

    Article  CAS  Google Scholar 

  37. H. Yazid, R. Adnan, M. A. Farrukh, and S. A. Hamid, J. Chin. Chem. Soc. 58, 593 (2011).

    Article  CAS  Google Scholar 

  38. H. Yazid, R. Adnan, and M. A. Farrukh, Ind. J. Chem. A 52, 184 (2013).

    Google Scholar 

  39. M. A. Farrukh, C.-K. Thong, R. Adnan, and M. A. Kamarulzaman, Russ. J. Phys. Chem. A 86,2041 (2012).

    Article  CAS  Google Scholar 

  40. I. Muneer, M. A. Farrukh, M. K. Rahman, A. A. Umar, and R. Adnan, Mater. Sci. Forum 756, 197 (2013).

    Article  CAS  Google Scholar 

  41. Z. L. Peia, W. Y. Yinb, J. F. Wanga, J. Chena, C. J. Fana, and F. Q. Zhanga, Mater. Res. Bull. 13, 339 (2010).

    Article  Google Scholar 

  42. J. Zhou, S. Yang, and J. Yu, Colloid. Surf. A 379, 102 (2011).

    Article  CAS  Google Scholar 

  43. A. Ganguly, P. Trinh, K. V. Ramanujachary, T. Ahmad, A. Mugweru, and A. K. Ganguli, J. Colloid. Interface Sci. 353, 137 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akhyar Farrukh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perveen, H., Farrukh, M.A., Khaleeq-ur-Rahman, M. et al. Synthesis, structural properties and catalytic activity of MgO-SnO2 nanocatalysts. Russ. J. Phys. Chem. 89, 99–107 (2015). https://doi.org/10.1134/S0036024415010094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415010094

Keywords

Navigation