Skip to main content
Log in

Molecular statistical theory of small bodies and their thermophysical and thermodynamic characteristics

  • Discussions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The constraints of classical thermodynamics on analyzing nanosized objects are considered. It is shown that it is essential to separate the thermodynamic concepts of a cluster and a drop. Using the lattice gas model, a molecular statistical theory of small multicomponent mixtures is developed that considers inter-particle interactions in several coordination spheres and the effects of size equilibrium fluctuations. Kinetic equations describing the particle redistribution dynamics inside small bodies and the problems of allowing for size fluctuations in them are discussed. The principles of the molecular statistical theory are compared to results from applying molecular dynamics to modeling the states of small clusters and the surface states of metal atoms during their adsorption and diffusion on graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Frenkel’, Kinetic Theory of Liquids (Akad. Nauk SSSR, Moscow, 1945) [in Russian].

    Google Scholar 

  2. V. P. Skripov and M. Z. Faizullin, Phase Transitions Crystal-Liquid-Gas and Thermodynamic Similarity (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  3. N. F. Uvarov and V. V. Boldyrev, Russ. Chem. Rev. 70, 265 (2001).

    Article  CAS  Google Scholar 

  4. O. A. Petri and G. A. Tsirlina, Russ. Chem. Rev. 70, 285 (2001).

    Article  Google Scholar 

  5. M. Haruta and M. Date, Appl. Catal. A: Gen. 222, 427 (2001).

    Article  CAS  Google Scholar 

  6. M.-C. Daniel and D. Austric, Chem. Rev. 104, 293 (2004).

    Article  CAS  Google Scholar 

  7. M. Haruta, Gold Bull. 37, 27 (2004).

    Article  CAS  Google Scholar 

  8. V. V. Smirnov, S. N. Lanin, A. Yu. Vasil’kov, et al., Russ. Chem. Bull. 54, 2286 (2005).

    Article  CAS  Google Scholar 

  9. T. N. Rostovshchikova, V. V. Smirnov, V. M. Kozhevin, et al., Ross. Nanotekhnol. 2(1–2), 47 (2007).

    Google Scholar 

  10. A. A. Eliseev and A. V. Lukashin, Functional Nanomaterials (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  11. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  12. I. P. Suzdalev, Electrical and Magnetic Transitions in Nanoclusters and Nanostructures (Krasand, Moscow, 2011) [in Russian].

    Google Scholar 

  13. Handbook Springer of Nanotechnology, Ed. by Bharat Bhushan (Springer Science + Business Media, Berlin, Heidelberg, New York, 2007).

    Google Scholar 

  14. V. A. Polukhin and N. A. Vatolin, Modelling of Disordered and Nanostructured Phases (Ural. Otdel. RAN, Yekaterinburg, 2011) [in Russian].

    Google Scholar 

  15. J. W. Gibbs, Elementary Principles of Statistical Mechanics (Ox Bow Press, 1981; Nauka, Moscow, 1982).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

    Google Scholar 

  17. T. Hill, Statistical Mechanics. Principles and Selected Applications (Dover, New York, 1987; Inostr. Liter., Moscow, 1960).

    Google Scholar 

  18. Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 1786 (2014).

    Google Scholar 

  19. Yu. K. Tovbin, Russ. J. Phys. Chem. A 86, 1180 (2012).

    Article  CAS  Google Scholar 

  20. D. K. Belashchenko, Zh. Fiz. Khim. 89(3) (2015, in press).

    Google Scholar 

  21. A. V. Polukhin and E. D. Kurbanova, Zh. Fiz. Khim. 89(3) (2015, in press).

    Google Scholar 

  22. R. Rubo, Thermodynamics (North-Holland, Amsterdam, 1969; Mir, Moscow, 1970).

    Google Scholar 

  23. I. P. Bazarov, Thermodynamics (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  24. V. A. Kireev, Course on Physical Chemistry (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  25. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  26. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1970), Vol. 1 [in Russian].

    Google Scholar 

  27. Yu. K. Tovbin, Russ. J. Phys. Chem. A 86, 1356 (2012).

    Article  CAS  Google Scholar 

  28. T. L. Hill, J. Chem. Phys. 19, 261 (1951).

    Article  CAS  Google Scholar 

  29. S. Kondo, J. Chem. Phys. 25, 662 (1956).

    Article  CAS  Google Scholar 

  30. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids, Handbuch der Physik (Springer, Berlin, Gottinhen, Heidelberg, 1960).

    Google Scholar 

  31. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon, Oxford, 1978).

    Google Scholar 

  32. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 705 (2010).

    Article  CAS  Google Scholar 

  33. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 1717 (2010).

    Article  CAS  Google Scholar 

  34. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).

    Article  CAS  Google Scholar 

  35. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 857 (2010).

    Article  CAS  Google Scholar 

  36. S. M. Mezhikovskii, A. E. Arinshtein, and R. Ya. Deberdeev, Oligomeric State of Matter (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  37. A. A. Tager, Physics and Chemistry of Polymers (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  38. A. V. Storonkin, Thermodynamics of Heterogeneous Systems (Leningrad Gos. Univ., Leningrad, 1967) [in Russian].

    Google Scholar 

  39. Yu. Ya. Gotlib, A. A. Darinskii, and Yu. E. Svetlov, Physical Kinetics of Macromolecules (Khimiya, Leningrad, 1986) [in Russian].

    Google Scholar 

  40. A. G. Grivtsov, in Method of Molecular Dynamics (Nauka, Moscow, 1996), p. 16 [in Russian].

    Google Scholar 

  41. Yu. K. Tovbin and V. N. Komarov, Russ. Chem. Bull. 62, 2620 (2013).

    Article  CAS  Google Scholar 

  42. Yu. K. Tovbin and V. N. Komarov, Phys. Solid State 56, 341 (2014).

    Article  CAS  Google Scholar 

  43. Yu. K. Tovbin, Russ. J. Phys. Chem. A 69, 105 (1995).

    Google Scholar 

  44. Yu. K. Tovbin, Molecular Theory of Adsorption in Porous Bodies (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  45. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 1993 (2010).

    Article  CAS  Google Scholar 

  46. Yu. K. Tovbin, Russ. J. Phys. Chem. B 4, 1033 (2010).

    Article  Google Scholar 

  47. G. M. Fikhtengoltz, Course of Differential and Integral Calculus (Fizmatgiz, Moscow, 1963), Vol. 1, p. 371 [in Russian].

    Google Scholar 

  48. Yu. K. Tovbin, Theory of Physical Chemical Processes at a Gas-Solid Surface Processes (Nauka, Moscow, 1990; CRC Press, Boca Raton, 1991).

    Google Scholar 

  49. K. P. Gurov, B. A. Kartashkin, and E. Yu. Ugaste, Inter-diffusion in Multiphase Metallic Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  50. L. Girifalco, Statistical Physics of Materials (Wiley, New York, London, Sidney, Toronto, 1973).

    Google Scholar 

  51. H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Series in Solid-State Sciences (Springer, 2009; Intellekt, Dolgoprudnyi, 2011).

    Google Scholar 

  52. Yu. K. Tovbin, Russ. J. Phys. Chem. A 88, 213 (2014).

    Article  CAS  Google Scholar 

  53. Yu. K. Tovbin, Khim. Fiz. 15(8), 45 (1996).

    CAS  Google Scholar 

  54. N. N. Bogolyubov, Problems of Dynamical Theory in Statictical Physics (Gostekhizdat, Moscow, 1946; Intersci., New York, 1962).

    Google Scholar 

  55. K. P. Gurov, Principles of Kinetic Theory (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  56. J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  57. Yu. L. Klimontovich, Turbulent Motion and the Structure of Chaos: A New Approach to the Statistical Theory of Open Systems (Nauka, Moscow, 1990; Kluwer Academic, Dordrecht, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.K. Tovbin, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 3, pp. 551–568.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K. Molecular statistical theory of small bodies and their thermophysical and thermodynamic characteristics. Russ. J. Phys. Chem. 89, 547–562 (2015). https://doi.org/10.1134/S0036024415030309

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415030309

Keywords

Navigation