Skip to main content
Log in

Structure of solvates of o-hydroxybenzoic acid in supercritical CO2-cosolvent media, according to molecular dynamics data

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Three-component supercritical carbon dioxide-cosolvent (methanol, ethanol, water)-o-hydroxybenzoic acid (o-HBA) mixtures at a density of 0.7 g/cm3 and temperatures of 318 and 348 K are simulated by means of molecular dynamics. The solvate structures are investigated. It is shown that the solvation mechanism of o-HBA (particularly the o-HBA molecule forming a stable solvate complex with one molecule of a cosolvent via a hydrogen bond through the carboxyl group) does not depend on the temperature or the cosolvent. It is noted that the form of the cosolvent in a supercritical fluid varies: alcohols are distributed in the bulk in the form of monomers and hydrogen-bonded dimers, and water molecules tend to form microclusters along with chained and spatially branched structures by means of hydrogen bonds. It is established that the local molar fraction of cosolvent around the solvate complexes grows. It is concluded that the solvation of o-HBA is determined by the behavior of cosolvent in media of supercritical CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Gurdial, S. J. Macnaughton, D. L. Tomasko, and N. R. Forster, Ind. Eng. Chem. Res. 32, 1488 (1993).

    Article  CAS  Google Scholar 

  2. J. Ke, C. Mao, M. Zhong, et al., J. Supercrit. Fluids 9, 82 (1996).

    Article  CAS  Google Scholar 

  3. M. T. Tena, A. Rios, and M. Valcarcel, Fresenius J. Anal. Chem. 361, 143 (1998).

    Article  CAS  Google Scholar 

  4. U. Salgin, N. Yildiz, and A. Calimli, Separat. Sci. Technol. 39, 2677 (2004).

    Article  CAS  Google Scholar 

  5. R. N. Maksudov, Izv. Vyssh. Uchebn. Zaved., Khim. Tekhnol. 51(1), 47 (2008).

    CAS  Google Scholar 

  6. A. N. Sabirzyanov, A. P. Il’in, A. R. Akhunov, and F. M. Gumerov, High Temp. 40, 203 (2002).

    Article  Google Scholar 

  7. P. T. Anastas, ACS Symp. Ser. 819(1), 1 (2002).

    CAS  Google Scholar 

  8. E. J. Beckman, J. Supercrit. Fluids 28, 121 (2004).

    Article  CAS  Google Scholar 

  9. H. Machida, M. Takesue, and R. L. Smith, J. Supercrit. Fluids 60, 2 (2011).

    Article  CAS  Google Scholar 

  10. J. C. Gonzalez, M. R. Vieytes, J. M. Vieites, and L. M. Botana, J. Am. Chem. Soc. 78, 77 (2001).

    CAS  Google Scholar 

  11. Y. Iwai, M. Uno, H. Nagano, and Y. Arai, J. Supercrit. Fluids 28, 193 (2004).

    Article  CAS  Google Scholar 

  12. S. Machmudah, A. Martin, M. Sasaki, and M. Goto, J. Supercrit. Fluids 66, 111 (2012).

    Article  CAS  Google Scholar 

  13. E. Apol, R. Apostolov, and H. J. C. Berendsen, GROMACS 4.5.4. www.gromacs.org

  14. J. G. Harris and K. H. Yung, J. Phys. Chem. 99, 12021 (1995).

    Article  CAS  Google Scholar 

  15. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  16. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  17. S. Nose, Mol. Phys. 52, 255 (1984).

    Article  CAS  Google Scholar 

  18. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  Google Scholar 

  19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, London, 1987).

    Google Scholar 

  20. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  21. U. Essmann, L. Perera, M. L. Berkowitz, et al., J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  22. B. Hess, H. Bekker, H. J. C. Berendsen, and J. G. E. M. Fraaije, J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  23. V. E. Petrenko, M. L. Antipova, and D. L. Gurina, J. Supercrit. Fluids 85, 1 (2014).

    Article  CAS  Google Scholar 

  24. M. L. Antipova, D. L. Gurina, and V. E. Petrenko, Russ. J. Phys. Chem. A 88, 259 (2014).

    Article  CAS  Google Scholar 

  25. D. C. Rapaport, Mol. Phys. 50, 1151 (1983).

    Article  CAS  Google Scholar 

  26. J. A. Padro, L. Saiz, and E. Guardia, J. Mol. Struct. 416, 243 (1997).

    Article  CAS  Google Scholar 

  27. E. Guardia, J. Marti, J. A. Padro, et al., J. Mol. Liq. 96–97, 3 (2002).

    Article  Google Scholar 

  28. V. E. Petrenko, A. V. Borovkov, M. L. Antipova, and O. V. Ved’, Russ. J. Phys. Chem. A 81, 1783 (2007).

    Article  CAS  Google Scholar 

  29. S. Kim and K. P. Johnson, AIChE J. 33, 1603 (1987).

    Article  CAS  Google Scholar 

  30. J. M. Stubbs and J. I. Siepmann, J. Chem. Phys. 121, 1525 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Petrenko.

Additional information

Original Russian Text © V.E. Petrenko, M.L. Antipova, D.L. Gurina, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 3, pp. 414–419.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrenko, V.E., Antipova, M.L. & Gurina, D.L. Structure of solvates of o-hydroxybenzoic acid in supercritical CO2-cosolvent media, according to molecular dynamics data. Russ. J. Phys. Chem. 89, 411–416 (2015). https://doi.org/10.1134/S0036024415030231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415030231

Keywords

Navigation