Skip to main content
Log in

Calculating the radial distribution functions of supercritical methanol by means of Car-Parrinello and classical molecular dynamics

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Radial distribution functions and the average number of hydrogen bonds per methanol molecule under standard, subcritical, and supercritical conditions are obtained via classical molecular dynamics and Car-Parrinello nonempirical molecular dynamics. It is shown that independent methods of modeling yield close results. It is noted that the calculated radial distribution functions agree well with the experimental data only at T = 298 K and P = 0.1 MPa, while at high temperatures and pressures, considerable divergence from the experimental functions known from the literature is observed. It is concluded that both modeling methods reproduce the degree of hydrogen bonding in methanol and its variations depending on the state parameters and correspond closely to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bai and C. R. Yonker, J. Phys. Chem. A 102, 8641 (1998).

    Article  CAS  Google Scholar 

  2. M. Hoffmann and M. Conradi, J. Phys. Chem. B 102, 263 (1998).

    Article  CAS  Google Scholar 

  3. T. Yamaguchi, C. J. Benmore, and A. K. Soper, J. Chem. Phys. 112, 8976 (2000).

    Article  CAS  Google Scholar 

  4. N. Asahi and Y. Nakamura, J. Chem. Phys. 109, 9879 (1998).

    Article  CAS  Google Scholar 

  5. M. Chalaris and J. Samios, J. Phys. Chem. B 103, 1161 (1999).

    Article  CAS  Google Scholar 

  6. Y. Yamaguchi, N. Yasutake, and M. Nagaoka, J. Phys. Chem. A 106, 404 (2002).

    Article  CAS  Google Scholar 

  7. D. S. Bulgarevich, K. Otake, K. Sako, et al., J. Chem. Phys. 116, 1995 (2002).

    Article  CAS  Google Scholar 

  8. T. Honma, C. Liew, and H. Inomata, J. Phys. Chem. A 107, 3960 (2003).

    Article  CAS  Google Scholar 

  9. T. Yamaguchi, N. Matubayasi, and M. Nakahara, J. Phys. Chem. A 108, 1319 (2004).

    Article  CAS  Google Scholar 

  10. M. Chalaris and J. Samios, Pure Appl. Chem. 76, 203 (2004).

    Article  CAS  Google Scholar 

  11. K. Saitow and J. Sasaki, J. Chem. Phys. 122, 104502 (2005).

    Article  Google Scholar 

  12. J. M. Andanson, P. A. Bopp, and J. C. Soetens, J. Mol. Liq. 129, 101 (2006).

    Article  CAS  Google Scholar 

  13. I. Skarmoutsos and J. Samios, J. Chem. Phys. 126, 044503 (2007).

    Article  Google Scholar 

  14. T. Tsukahara and M. Harada, J. Phys. Chem. A 112, 9657 (2008).

    Article  CAS  Google Scholar 

  15. M. Haughney, M. Ferrario, and I. R. McDonald, J. Chem. Phys. 91, 4934 (1987).

    Article  CAS  Google Scholar 

  16. M. Pagliai, G. Cardini, R. Righini, and V. Schettino, J. Chem. Phys. 119, 6655 (2003).

    Article  CAS  Google Scholar 

  17. Th. Schnabel, A. Srivastava, J. Vrabec, and H. Hasse, J. Phys. Chem. B 111, 9871 (2007).

    Article  CAS  Google Scholar 

  18. I.-F. W. Kuo, C. J. Mundy, M. J. McGrath, and J. I. Siepmann, J. Phys. Chem. C 112, 15412 (2008).

    Article  CAS  Google Scholar 

  19. T. Ishiyama, V. V. Sokolov, and A. Morita, J. Chem. Phys. 134, 024509 (2011).

    Article  Google Scholar 

  20. M. J. McGrath, I.-F. W. Kuo, and J. I. Siepmann, Phys. Chem. Chem. Phys. 13, 19943 (2011).

    Article  CAS  Google Scholar 

  21. T. Yamaguchi, K. Hidaka, and A. K. Soper, Mol. Phys. 96, 1159 (1999).

    Article  CAS  Google Scholar 

  22. T. Yamaguchi, K. Hidaka, and A. K. Soper, Mol. Phys. 97, 603 (1999).

    Article  CAS  Google Scholar 

  23. A. Vrhovsek, O. Gereben, S. Pothoczki, et al., J. Phys.: Condens. Matter 22, 404214 (2010).

    Article  Google Scholar 

  24. A. Vrhovsek, O. Gereben, A. Jamnik, and L. Pusztai, J. Phys. Chem. B 115, 13473 (2011).

    Article  CAS  Google Scholar 

  25. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  Google Scholar 

  26. E. Apol, R. Apostolov, and H. J. C. Berendsen, GRO-MACS 4.5.4 (Sweden, 2001–2010); www.gromacs.org.

    Google Scholar 

  27. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  28. J. Hutter, A. Alavi, T. Deutch, et al., CPMD (MPI fur Festkorperforschung and IBM Zurich Research Laboratory, Stuttgart, 1995–1999).

    Google Scholar 

  29. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  30. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  31. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  CAS  Google Scholar 

  32. D. L. Gurina, M. L. Antipova, and V. E. Petrenko, Russ. J. Phys. Chem. A 85, 797 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Petrenko.

Additional information

Original Russian Text © D.L. Gurina, V.E. Petrenko, M.L. Antipova, 2013, published in Zhurnal Fizicheskoi Khimii, 2013, Vol. 87, No. 7, pp. 1164–1170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurina, D.L., Petrenko, V.E. & Antipova, M.L. Calculating the radial distribution functions of supercritical methanol by means of Car-Parrinello and classical molecular dynamics. Russ. J. Phys. Chem. 87, 1138–1144 (2013). https://doi.org/10.1134/S0036024413070121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024413070121

Keywords

Navigation