Skip to main content
Log in

A Molecular Dynamics Simulation Probe of the Solubility Parameters of Supercritical Water and Methanol

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Solubility parameters of supercritical water and methanol were probed by using molecular dynamics simulation. The computed solubility parameters agree well with the theoretical values for different temperatures and pressures within the supercritical region. The results show that the solubility parameter decreases with increasing temperature and increases with increasing the pressure. The polarity of the system increases at higher temperatures; therefore, the degree of molecular aggregation increases. Raising the pressure of the system reduces the degree of aggregation between molecules and increases the solubility parameter of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Knez, Ž.; Markočič, E.; Leitgeb, M.; Primožič, M.; Knez Hrnčič, M.; Škerget, M.: Industrial applications of supercritical fluids: a review. Energy 77, 235–243 (2014). https://doi.org/10.1016/j.energy.2014.07.044

    Article  Google Scholar 

  2. Kiran, E.: Supercritical fluids and polymers—the year in review—2014. J. Supercrit. Fluids 110, 126–153 (2016). https://doi.org/10.1016/j.supflu.2015.11.011

    Article  Google Scholar 

  3. Khaw, K.Y.; Parat, M.O.; Shaw, P.N.; Falconer, J.R.: Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: a review. Molecules (2017). https://doi.org/10.3390/molecules22071186

    Article  Google Scholar 

  4. Knez, Ž.; Cör, D.; Knez, Hrnčič M.: Solubility of solids in sub- and supercritical fluids: a review 2010–2017. J. Chem. Eng. Data 63, 860–884 (2018). https://doi.org/10.1021/acs.jced.7b00778

    Article  MathSciNet  Google Scholar 

  5. Chen, L.; Global, I.; Iwamoto, Y.: Advanced Applications of Supercritical Fluids in Energy Systems, p. 2017. Engineering Science Reference, Hershey (2017)

    Book  Google Scholar 

  6. Kruse, A.: Hydrothermal biomass gasification. J. Supercrit. Fluids 47, 391–399 (2009). https://doi.org/10.1016/j.supflu.2008.10.009

    Article  Google Scholar 

  7. Brunner, G.: Near and supercritical water. Part II: oxidative processes. J. Supercrit. Fluids 47, 382–390 (2009). https://doi.org/10.1021/acs.energyfuels.8b01852

    Article  Google Scholar 

  8. Alasiri, H.; Klein, M.T.: A density functional theory probe of the hydrolysis of heavy hydrocarbon structural moieties in supercritical water. Energy Fuels 32, 8700–8704 (2018). https://doi.org/10.1021/acs.energyfuels.8b01852

    Article  Google Scholar 

  9. Jazzar, S.; Quesada-medina, J.; Olivares-carrillo, P.; Néjib, M.; Acién-fernández, F.G.; Fernández-sevilla, J.M.; et al.: Whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. Bioresour. Technol. 190, 281–288 (2015). https://doi.org/10.1016/j.biortech.2015.04.097

    Article  Google Scholar 

  10. Manuale, D.L.; Torres, G.C.; Vera, C.R.; Yori, J.C.: Study of an energy-integrated biodiesel production process using supercritical methanol and a low-cost feedstock. Fuel Process. Technol. 140, 252–261 (2015). https://doi.org/10.1016/j.fuproc.2015.08.026

    Article  Google Scholar 

  11. Wang, B.; Yang, C.; Xu, J.; Zeng, D.; Jin, T.; Fang, T.: Research on transesterification parameters for producing plant sterols with supercritical methanol. Toxicol. Environ. Chem. 97, 314–325 (2015). https://doi.org/10.1080/02772248.2015.1050184

    Article  Google Scholar 

  12. Sun, Z.; Bottari, G.; Barta, K.: Supercritical methanol as solvent and carbon source in the catalytic conversion of 1,2-diaminobenzenes and 2-nitroanilines to benzimidazoles. Green Chem. 17, 5172–5181 (2015)

    Article  Google Scholar 

  13. Lim, S.; Lee, K.T.: Bioresource technology optimization of supercritical methanol reactive extraction by response surface methodology and product characterization from Jatropha curcas L. seeds. Bioresour. Technol. 142, 121–130 (2013). https://doi.org/10.1016/j.biortech.2013.05.010

    Article  Google Scholar 

  14. Zhang, C.; Xu, L.; Zhang, H.; Yang, J.; Du, J.; Liu, Z.: Determination of solid products from the de-polymerization of poly (trimethylene terephthalate) in supercritical methanol. J. Chromatogr. A 1055, 115–121 (2004). https://doi.org/10.1016/j.chroma.2004.08.146

    Article  Google Scholar 

  15. Hansen, C.M.: Hansen Solubility Parameters: A User’s Handbook, vol. 53, 2nd edn. Taylor & Francis Group, London (2007). https://doi.org/10.1017/cbo9781107415324.004

    Book  Google Scholar 

  16. Kitak, T.; Dumičič, A.; Planinšek, O.; Šibanc, R.; Srčič, S.; Rades, T.; et al.: Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules 20, 21549–21568 (2015). https://doi.org/10.3390/molecules201219777

    Article  Google Scholar 

  17. King, J.W.: Determination of the solubility parameter of soybean oil by inverse gas chromatography. Leb Und-Technologie (Food Sci. Technol.) 28, 190–195 (1995). https://doi.org/10.1016/s0023-6438(95)91398-x

    Article  Google Scholar 

  18. Sreekanth, T.V.M.; Ramanaiah, S.; Lee, K.D.; Reddy, K.S.: Hansen solubility parameters in the analysis of solvent–solvent interactions by inverse gas chromatography. J. Macromol. Sci. Part B Phys. 51, 1256–1266 (2012). https://doi.org/10.1080/00222348.2011.627825

    Article  Google Scholar 

  19. Marcus, Y.: Total and partial solubility parameters of sub- and supercritical ethanol. J. Chem. Thermodyn. 126, 187–189 (2018). https://doi.org/10.1016/j.jct.2018.06.023

    Article  Google Scholar 

  20. Marcus, Y.: Total and partial solubility parameters of supercritical methanol. J. Supercrit. Fluids 111, 43–46 (2016). https://doi.org/10.1016/j.supflu.2016.01.009

    Article  Google Scholar 

  21. Marcus, Y.: Are solubility parameters relevant to supercritical fluids? J. Supercrit. Fluids 38, 7–12 (2006). https://doi.org/10.1016/j.supflu.2005.11.008

    Article  Google Scholar 

  22. Marcus, Y.: Hansen solubility parameters for supercritical water. J. Supercrit. Fluids 62, 60–64 (2012). https://doi.org/10.1016/j.supflu.2011.10.018

    Article  Google Scholar 

  23. Mohammed, S.; Mansoori, G.A.: Molecular insights on the interfacial and transport properties of supercritical CO2/brine/crude oil ternary system. J. Mol. Liq. 263, 268–273 (2018). https://doi.org/10.1016/j.molliq.2018.05.009

    Article  Google Scholar 

  24. Choi, P.; Kavassalis, T.A.; Rudin, A.: Estimation of the three-dimensional solubility parameters of alkyl phenol ethoxylates using molecular dynamics. J. Colloid Interface Sci. 150, 386–393 (1992). https://doi.org/10.1016/0021-9797(92)90208-4

    Article  Google Scholar 

  25. Qing, X.; Kailiang, Y.: Calculation of solubility parameters of organic solvents by molecular dynamics simulation Journal of Jiangsu University. J. Jiangsu Univ. 16, 40–42 (2004)

    Google Scholar 

  26. Linstrom, P.J.; Mallard, W.G. (eds.): NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899; n.d. https://doi.org/10.18434/t4d303.

  27. See Accelrys page: http://accelrys.com/ n.d. Accessed 1 Oct 2018

  28. Sum, H.: COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 102, 7338–7364 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from Center for Refining and Petrochemicals at King Fahd University of Petroleum and Minerals (KFUPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Alasiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alasiri, H. A Molecular Dynamics Simulation Probe of the Solubility Parameters of Supercritical Water and Methanol. Arab J Sci Eng 44, 9911–9917 (2019). https://doi.org/10.1007/s13369-019-03957-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03957-w

Keywords

Navigation